Query Optimization

PS 2 due Wednesday.

Selinger

Famous paper. Pat Selinger was one of the early System R researchers; still active today.

Lays the foundation for modern query optimization. Some things are weak but have since been improved upon.

Idea behind query optimization:
 (Find query plan of minimum cost)

How to do this?
 (Need a way to measure cost of a plan (a cost model))

Single table operations

how do I compute the cost of a particular predicate?
 compute it's "selectivity" - fraction F of tuples it passes

how does Selinger define these? -- based on type of predicate and available statistics

what statistics does system R keep?
 - NCARD - "relation cardinality" -- number of tuples in relation
 - TCARD - # pages relation occupies
 - ICARD - keys (distinct values) in index
 - NINDEX - pages occupied by index
 - min and max keys in indexes

(have to realize that the complexity of statistics you could keep in 1978 was pretty simple!)

Estimating selectivity F:

col = val
 F = 1/ICARD() (if index available)
 F = 1/10 (where does this come from?)

col > val
 high key - value / high key - low key (if index available)
 1/3 o.w.

col1 = col2
 1/MAX(ICARD(col1, col2))
 1/10 o.w.

ex: suppose emp has 1000 records, dept has 10 records
 total records is 1000 * 10, selectivity is 1/1000, so 10 tuples expected to pass join
 (note that this is wrong if doing key/fk join on emp.did = dept.did, which will produce 1000 results!)

Note that selectivity is defined relative to size of cross product for joins!

p1 and p2
 F1 * F2
p1 or p2

\[1 - (1-F1) \times (1-F2) \]

then, compute access cost for scanning the relation.
how is this defined?
(in terms of number of pages read)

equal predicate with unique index: \[1 \text{ [btree lookup]} + 1 \text{ [heapfile lookup]} + W \]

(W is CPU cost per predicate eval in terms of fraction of a time to read a page)

range scan:

clustered index, boolean factors: \[F(\text{preds}) \times (\text{NINDEX} + \text{TCARD}) + W*(\text{tuples read}) \]

unclustered index, boolean factors: \[F(\text{preds}) \times (\text{NINDEX} + \text{NCARD}) + W*(\text{tuples read}) \]

unless all pages fit in buffer -- why?

... seq (segment) scan: \[\text{TCARD} + W*(\text{NCARD}) \]

Is an index always better than a segment scan? (no)

multi-table operations

how do i compute the cost of a particular join?

algorithms:

\[\text{NL(A,B,pred)} \]

\[\text{Cost(A)} + \text{NCARD(A)} \times \text{Cost(B)} \]

Note that inner is always a relation; cost to access depends on access methods for B; e.g.,

w/ index -- 1 + 1 + W

w/out index -- TCARD(B) + W*NCARD(B)

Cost(A) is cost of subtree under outer

How to estimate \# NCARD(outer)? product of F factors of children, cardinalities of children

example:

\[\text{Merge_Join}_x(P,A,B), \text{equality pred} \]

\[\text{Cost(A)} + \text{Cost(B)} + \text{sort cost} \]

(Saw cost models for these last time)

At time of paper, didn't believe hashing was a good idea

Overall plan cost is just sum of costs of all access methods and join operators

Then, need a way to enumerate plans
Iterate over plans, pick one of minimum cost

Problem:

Huge number of plans. Example:

suppose I am joining three relations, A, B, C
Can order them as:

(AB)C
A(BC)
(AC)B
A(CB)
(BA)C
B(AC)
(BC)A
B(AC)
(CA)B
C(AB)
(CB)A
C(BA)

Is C(AB) different from (CA)B?
Is (AB)C different from C(AB)?
	yes, inner vs. outer

n! strings * # of parenthetizations

How many parenthetizations are there?

Consider N=1,2,3,4:

A: (A)
AB: ((A)(B))
ABC: ((AB)C), (A(BC))
ABCD:(((AB)C)D), ((A(BC))D), ((AB)(CD)), (A((BC)D)), (A(B(CD)))

The numbers of plans for N=1,2,3,4 are:

plans(1) = 1
plans(2) = 1
plans(3) = 2
plans(4) = 5

Generally, plans(N) = choose(2(N-1),(N-1))/(N) *

* The Art of Computer Programming, Volume 4A, page 440-450

=> n! * choose(2(N-1),(N-1))/(N)!

6 * 2 == 12 for 3 relations

(study break -- postgres)

Ok, so what does Selinger do?

Push down selections and projections to leaves
Now left with a bunch of joins to order.

Selinger simplifies using 2 heuristics? What are they?

- only left deep; e.g., ABCD => (((AB)C)D) show
- ignore cross products

 e.g., if A and B don't have a join predicate, doing consider joining them

still n! orderings. can we just enumerate all of them?

10! -- 3million
20! -- 2.4 * 10 ^ 18

so how do we get around this?

Estimate cost by dynamic programming:

idea: if I compute join (ABC)DE -- I can find the best way to combine ABC and then consider all the ways to combine that with DE.

I can remember the best way to compute (ABC), and then I don't have to re-evaluate it. Best way to do ABC may be ACB, BCA, etc -- doesn't matter for purposes of this decision.

algorithm: compute optimal way to generate every sub-join of size 1, size 2, ... n (in that order).

R <-- set of relations to join
for δ in {1...|R|}:
 for S in {all length δ subsets of R}:
 optjoin(S) = a join (S-a), where a is the single relation that minimizes:
 cost(optjoin(S-a)) +
 min cost to join (S-a) to a +
 min. access cost for a

example: ABCD

only look at NL join for this example

A = best way to access A (e.g., sequential scan, or predicate pushdown into index...)
B =
C =
D =

{A,B} = AB or BA
{A,C} = AC or CA
{B,C} = BC or CB
{A,D}
{B,D}
{C,D}

{A,B,C} = remove A - compare A({B,C}) to ((B,C))A
 remove B - compare (A,C)B to B((A,C))B
 remove C - compare C({A,B}) to ((A,B))C
{A,C,D}
{A,B,D}
{B,C,D}

\(\{A, B, C, D\} = \text{remove } A - \text{compare } A((B, C, D)) \text{ to } ((B, C, D))A\)

\[
{... \\
 \text{remove } B \\
 \text{remove } C \\
 \text{remove } D}
\]

Complexity:

- number of subsets of size 1 * work per subset = \(W^+\)
- number of subsets of size 2 * \(W^+\)
- ... number of subsets of size \(n\) * \(W^+\)

\[n + n + n \ldots n\]

\[1 \quad 2 \quad 3 \quad \ldots \quad n\]

- number of subsets of set of size \(n\) = power set of \(n\) = \(2^n\)
 - (string of length \(n\), 0 if element is in, 1 if it is out; clearly, \(2^n\) such strings)

(reduced an \(n!\) problem to a \(2^n\) problem)

- what's \(W\)? (at most \(n\))
- so actual cost is: \(2^n * n\)

\[n=12 \rightarrow 49K \text{ vs } 479M\]

So what's the deal with sort orders? Why do we keep interesting sort orders?

Selinger says: although there may be a 'best' way to compute \(ABC\), there may also be ways that produce interesting orderings -- e.g., that make later joins cheaper or that avoid final sorts.

So we need to keep best way to compute \(ABC\) for different possible sort orders.

so we multiply by "\(k\)" -- the number of interesting orders

how are things different in the real world?
- real optimizers consider bushy plans (why?)
 - A
 - D B
 - C E

- selectivity estimation is much more complicated than selinger says and is very important.

how does selinger estimate the size of a join?

- selinger just uses rough heuristics for equality and range predicates.

- what can go wrong?
 - consider \(ABCD\)
 - suppose sel \((A \text{ join } B) = .1\)
 - everything else is .01
 - If I don't leave \(A \text{ join } B\) until last, I'm off by a factor of 10
- how can we do a better job?
 (multi-d) histograms, sampling, etc.

example: 1d hist

example: 2d hist