Query Optimization

PS 2 due Wednesday.

Recap: last time saw join algorithms

Selinger

Famous paper. Pat Selinger was one of the early System R researchers; still active today.

Lays the foundation for modern query optimization. Some things are weak but have since been improved upon.

Idea behind query optimization:
(Find query plan of minimum cost)

How to do this?
(Need a way to measure cost of a plan (a cost model))

Single table operations

how do I compute the cost of a particular predicate?
compute it's "selectivity" - fraction F of tuples it passes

how does Selinger define these? -- based on type of predicate and available statistics

what statistics does system R keep?
- NCARD(R) - “relation cardinality” -- number of tuples in R
- TCARD(R) - # pages R occupies
- ICARD(I) - keys (distinct values) in index I
- NINDEX(I) - pages occupied by index I
- min and max keys in indexes

(have to realize that the complexity of statistics you could keep in 1978 was pretty simple!)

Estimating selectivity F:

col = val
F = 1/ICARD() (if index available)
F = 1/10 (where does this come from?)

col > val
(max key - value) / (max key - min key) (if index available)
1/3 o.w.

col1 = col2
1/MAX(ICARD(col1, col2))
1/10 o.w.

ex: suppose emp has 1000 records, dept has 10 records
total records is 1000 * 10, selectivity is 1/1000, so 10 tuples expected to pass join
(note that this is wrong if doing key/fk join on emp.did = dept.did, which will produce 1000 results!)

Note that selectivity is defined relative to size of cross product for joins!

p1 and p2
Estimating the cost of single table operations

How is cost defined? (in terms of number of pages read + a weighted factor of # predicate evals)

Equality predicate with unique index: \(1 \) [btree lookup] + 1 [heapfile lookup] + \(W \)

(W is CPU cost per predicate eval in terms of fraction of a time to read a page)

Range scan:

Clustered index, boolean factors: \(F(\text{preds}) \times (\text{NINDX + TCARD}) + W \times (\text{tuples read}) \)

Unclustered index, boolean factors: \(F(\text{preds}) \times (\text{NINDX + NCARD}) + W \times (\text{tuples read}) \)

unless all pages fit in buffer -- why?

... Seq (segment) scan: \(\text{TCARD} + W \times \text{NCARD} \)

Is an index always better than a segment scan? (no)

Multi-table operations

How do I compute the cost of a particular join?

Algorithms:

\[
\text{NL(A,B,pred)} \rightarrow \text{Cost(A)} + \text{NCARD(A)} \times \text{Cost(B)}
\]

Note that inner is always a relation; cost to access depends on access methods for B; e.g.,

w/ index -- 1 + 1 + \(W \)

w/out index -- \(\text{TCARD(B)} + W \times \text{NCARD(B)} \)

Cost(A) is cost of subtree under outer

How to estimate \# NCARD(outer)? product of F factors of children, cardinalities of children

example:

\[
\text{Merge_Join_x(P,A,B), equality pred}
\]

\[
\text{Cost(A)} + \text{Cost(B)} + \text{sort cost}
\]

(Saw cost models for these last time)

At time of paper, didn't believe hashing was a good idea
Overall plan cost is just sum of costs of all access methods and join operators
Then, need a way to enumerate plans

Iterate over plans, pick one of minimum cost

Problem:

Huge number of plans. Example:

suppose I am joining three relations, A, B, C
Can order them as:

- \((AB)C\)
- \(A(BC)\)
- \((AC)B\)
- \(A(CB)\)
- \((BA)C\)
- \(B(AC)\)
- \((BC)A\)
- \(B(AC)\)
- \((CA)B\)
- \(C(AB)\)
- \((CB)A\)
- \(C(BA)\)

Is \((AB)C\) different from \((CA)B\)?
Is \((AB)C\) different from \((CB)A\)?
 yes, inner vs. outer

\(n!\) strings * # of parenthetizations

How many parenthetizations are there?

Consider \(N=1,2,3,4:\)

- \(A:\ (A)\)
- \(AB:\ ((A)(B))\)
- \(ABC:\ ((AB)C), (A(BC))\)
- \(ABCD:\ (((AB)C)D), ((A(BC))D), ((AB)(CD)), (A((BC)D)), (A(B(CD)))\)

The numbers of plans for \(N=1,2,3,4\) are:

- \(plans(1) = 1\)
- \(plans(2) = 1\)
- \(plans(3) = 2\)
- \(plans(4) = 5\)

(Some of these plans Selinger wouldn't consider because they aren't left deep)

Generally, \(plans(N) = \text{choose}(2(N-1),(N-1))/(N) *\)

* The Art of Computer Programming, Volume 4A, page 440-450

\[\Rightarrow n! * \text{choose}(2(N-1),(N-1))/(N)\]
\[\Rightarrow 4 \text{ choose } 2 / 3 = 6 / 3 = 2\]
\[6 * 2 = 12\] for 3 relations
(study break -- postgres)

Ok, so what does Selinger do?

Push down selections and projections to leaves
Now left with a bunch of joins to order.

Selinger simplifies using 2 heuristics? What are they?

- only left deep; e.g., ABCD => (((AB)C)D) show
- ignore cross products
e.g., if A and B don't have a join predicate, doing consider joining them

still n! orderings. can we just enumerate all of them?

10! -- 3 million
20! -- 2.4 * 10 ^ 18

so how do we get around this?

Estimate cost by dynamic programming:

idea: if I compute join (ABC)DE -- I can find the best way to combine ABC and then consider all the ways to combine that with DE.

I can remember the best way to compute (ABC), and then I don't have to re-evaluate it. Best way to do ABC may be ACB, BCA, etc -- doesn't matter for purposes of this decision.

algorithm: compute optimal way to generate every sub-join of size 1, size 2, ... n (in that order).

R <--- set of relations to join
for ∂ in {1...|R|}:
 for S in {all length ∂ subsets of R}:
 optjoin(S) = a join (S-a), where a is the single relation that minimizes:
 cost(optjoin(S-a)) +
 min cost to join (S-a) to a +
 min. access cost for a

example: ABCD

only look at NL join for this example

A = best way to access A (e.g., sequential scan, or predicate pushdown into index...)
B = " " " B
C = " " " C
D = " " " D

{A,B} = AB or BA
{A,C} = AC or CA
{B,C} = BC or CB
{A,D}
{B,D}
{C,D}

{A,B,C} = remove A - compare A((B,C)) to ((B,C))A
remove B - compare B((A,C)) to (B(A,C))
remove C - compare (A,B))C to ((A,B))C

\{A, C, D\}
\{A, B, D\}
\{B, C, D\}

\{A, B, C, D\} = remove A - compare A((B, C, D)) to ((B, C, D))A
 remove B
 remove C
 remove D

Complexity:
number of subsets of size 1 * work per subset = W+
number of subsets of size 2 * W +
...
number of subsets of size n * W+
n + n + n ... n
 1 2 3 n

number of subsets of set of size n = power set of n = 2^n
(string of length n, 0 if element is in, 1 if it is out; clearly, 2^n such strings)

(reduced an n! problem to a 2^n problem)

what's W? (at most n)
so actual cost is: 2^n * n

n=12 --> 49K vs 479M

So what's the deal with sort orders? Why do we keep interesting sort orders?

Selinger says: although there may be a 'best' way to compute ABC, there may also be ways that produce interesting orderings -- e.g., that make later joins cheaper or that avoid final sorts.

So we need to keep best way to compute ABC for different possible sort orders.

so we multiply by "k" -- the number of interesting orders

how are things different in the real world?
- real optimizers consider bushy plans (why?)
 A
 \ D B
 \ C E

- selectivity estimation is much more complicated than selinger says and is very important.

how does selinger estimate the size of a join?

- selinger just uses rough heuristics for equality and range predicates.
what can go wrong?
consider ABCD
suppose sel (A join B) = .1
everything else is .01
If I don't leave A join B until last, I'm off by a factor of 10

how can we do a better job?
(multi-d) histograms, sampling, etc.

do we tend to do
example: 1d hist

example: 2d hist