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Over the last decade, the largest data warehouses have increased from 5 to 100 terabytes, 
according to Winter Corp., and by 2010, most of today’s data warehouses will be 10 times 
larger, according to The Data Warehouse Institute (TDWI).  As data warehouses grow in size to 
accommodate regulatory requirements and competitive pressures, ensuring adequate database 
performance will be a big challenge in order to answer more ad hoc queries from more people. 
This article examines the various ways databases are architected to handle the rapidly 
increasing scalability requirements, and the best combination of approaches for achieving high 
performance at low cost. 
 
Obviously, there are limits to the performance of any individual processor (CPU) or individual 
disk.  Hence, all high-performance computers include multiple CPUs and multiple disks.   
Similarly, a high-performance DBMS must take advantage of multiple disks and multiple CPUs.  
However, there are significant differences between various databases concerning how they are 
able to take advantage of resources.   
 
In the first section of this article (Better Performance through Parallelism: Three Common 
Approaches), we discuss hardware architectures and indicate which ones are more scalable.  
As well, we discuss the commercial DBMSs that run on each architecture.  In the second 
section (Going Even Faster: Hardware Acceleration), we turn to proprietary hardware as an 
approach to providing additional scalability, and indicate why this has not worked well in the 
past – and why it is unlikely to do any better in the future.  Lastly, the third section (Achieving 
Scalability through Software) discusses software techniques that can be used to enhance data 
warehouse performance. 
 
Better Performance through Parallelism: Three Common Approaches  
 
There are three widely used approaches for parallelizing work over additional hardware: 
 

• shared memory 
• shared disk  
• shared nothing 

 
Shared memory: In a shared-memory approach, as implemented on many symmetric multi-
processor machines, all of the CPUs share a single memory and a single collection of disks.  
This approach is relatively easy to program: complex distributed locking and commit protocols 
are not needed, since the lock manager and buffer pool are both stored in the memory system 
where they can be easily accessed by all the processors.  
 
Unfortunately, shared-memory systems have fundamental scalability limitations, as all I/O and 
memory requests have to be transferred over the same bus that all of the processors share, 
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causing the bandwidth of this bus to rapidly become a bottleneck.  In addition, shared-memory 
multiprocessors require complex, customized hardware to keep their L2 data caches consistent. 
Hence, it is unusual to see shared-memory machines of larger than 8 or 16 processors unless 
they are custom-built from non-commodity parts, in which case they are very expensive.  
Hence, shared-memory systems offer very limited ability to scale. 
 
Shared disk: Shared-disk systems suffer from similar scalability limitations. In a shared-disk 
architecture, there are a number of independent processor nodes, each with its own memory.  
These nodes all access a single collection of disks, typically in the form of a storage area 
network (SAN) system or a network-attached storage (NAS) system.  This architecture 
originated with the Digital Equipment Corporation VAXcluster in the early 1980s, and has been 
widely used by Sun Microsystems and Hewlett-Packard. 
 
Shared-disk architectures have a number of drawbacks that severely limit scalability.  First, the 
interconnection network that connects each of the CPUs to the shared-disk subsystem can 
become an I/O bottleneck.   Second, since there is no pool of memory that is shared by all the 
processors, there is no obvious place for the lock table or buffer pool to reside.  To set locks, 
one must either centralize the lock manager on one processor or resort to a complex distributed 
locking protocol.  This protocol must use messages to implement in software the same sort of 
cache-consistency protocol implemented by shared-memory multiprocessors in hardware.   
Either of these approaches to locking is likely to become a bottleneck as the system is scaled.  
 
To make shared-disk technology work better, vendors typically implement a “shared-cache” 
design.  Shared cache works much like shared disk, except that, when a node in a parallel 
cluster needs to access a disk page, it: 
 

1) First checks to see if the page is in its local buffer pool (“cache”) 
2) If not, checks to see if the page is in the cache of any other node in the cluster 
3) If not, reads the page from disk 

 
Such a cache appears to work fairly well on OLTP, but has big problems with data warehousing 
workloads. The problem with the shared-cache design is that cache hits are unlikely to happen, 
since warehouse queries are typically answered through sequential scans of the fact table (or 
via materialized views.)  Unless the whole fact table fits in the aggregate memory of the cluster, 
sequential scans do not typically benefit from large amounts of cache, thus placing the entire 
burden of answering such queries on the disk subsystem.  As a result, a shared cache just 
creates overhead and limits scalability. 
 
In addition, the same scalability problems that exist in the shared memory model also occur in 
the shared-disk architecture: the bus between the disks and the processors will likely become a 
bottleneck, and resource contention for certain disk blocks, particularly as the number of CPUs 
increases, can be a problem.  To reduce bus contention, customers frequently configure their 
large clusters with many Fibre channel controllers (disk buses), but this complicates system 
design because now administrators must partition data across the disks attached to the different 
controllers.  
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As a result, there are fundamental scalability limits to any database system based on a shared-
disk or shared-cache model.   
 
Shared Nothing:  In a shared-nothing approach, by contrast, each processor has its own set of 
disks.  Data is “horizontally partitioned” across nodes, such that each node has a subset of the 
rows from each table in the database.  Each node is then responsible for processing only the 
rows on its own disks.  Such architectures are especially well suited to the star schema queries 
present in data warehouse workloads, as only a very limited amount of communication 
bandwidth is required to join one or more (typically small) dimension tables with the (typically 
much larger) fact table.   
 
In addition, every node maintains its own lock table and buffer pool, eliminating the need for 
complicated locking and software or hardware consistency mechanisms.  Because shared 
nothing does not typically have nearly as severe bus or resource contention as shared-memory 
or shared-disk machines, shared nothing can be made to scale to hundreds or even thousands 
of machines.  Because of this, it is generally regarded as the best-scaling architecture [4].  
 
Shared-nothing clusters also can be constructed using very low-cost commodity PCs and 
networking hardware – as Google, Amazon, Yahoo, and MSN have all demonstrated.  For 
example, Google’s search clusters reportedly consist of tens of thousands of shared-nothing 
nodes, each costing around $700.  Such clusters of PCs are frequently termed “grid computers.” 
 
In summary, shared nothing dominates shared disk, which in turn dominates shared memory, in 
terms of scalability.   
 
Today’s data warehouse databases can be grouped by the parallelism approach they take.  In 
the first class, the least scalable one, are DBMSs that run only on the oldest shared-memory 
architectures.  Vendors of these systems have not expended the substantial effort to extend 
their software to either of the other two newer architectures.  In the second class are systems 
that began life using shared memory and were subsequently extended to run on a shared-disk 
architecture.  However, systems in this class have not been modified to take advantage of the 
most scalable shared-nothing architecture.  The third class of systems runs natively on shared-
nothing configurations. The second class is more scalable than the first class, but the third class 
is much more scalable than the second class.  Table 1 summarizes the leading commercial 
vendors in each class. 
 

Shared Memory 
(least scalable) 

Shared Disk 
(medium scalable) 

Shared Nothing 
(most scalable) 

Microsoft SQL Server Oracle RAC Teradata 
PostgreSQL Sybase IQ Netezza 
MySQL  IBM DB2 
  EnterpriseDB 
  Greenplum 
  Vertica 

  

Table 1:  Parallelism approaches taken by different data warehouse DBMS vendors. 
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Going Even Faster: Hardware Acceleration 
 
The best scalability is available from shared-nothing architectures, and there are two flavors of 
shared-nothing hardware.  The first flavor is a grid configuration from IBM, Hewlett-Packard or 
other vendor, who assembles a collection of single-board computers into a grid and packages 
them in a rack or cabinet.  Low-end grid systems (i.e., a single-core CPU with a low-end disk) 
cost about $700 per node.  This is the technology employed by most of the large e-commerce 
sites.  The second flavor is a grid configuration using high-end grid cells (e.g., a dual-core, dual-
CPU Opteron with multiple disks), which cost more than $2,000.  In either case, you are opting 
for commodity parts, assembled into a large computing complex. 
 
The alternative to these commodity shared-nothing systems is to purchase a specialized 
database appliance from Teradata,  Netezza or DATAllegro.  Currently the nodes in such 
appliances vary in price dramatically, but a typical price is $10K, for a $700 PC plus a modest 
amount of proprietary hardware.   A simple calculation indicates that there must be 14X 
acceleration from such appliances just to break even against the alternative of using commodity 
parts.  There is no evidence that any previous or current hardware database company, from 
Britton Lee in the early 1980’s to today’s companies, has achieved or achieves 14X 
acceleration.  As such, hardware acceleration has never been shown to be sufficiently good to 
compete against the steamroller of commodity parts.  For a more detailed discussion of this 
point, see [5].   
 
In summary, hardware appliances offer good scalability, but are likely to result in a long-term 
guided tour through your wallet.  It’s simply a much better deal to stick to shared-nothing 
DBMSs that run on commodity parts. 
 
Achieving Scalability Through Software 
 
The above discussion makes it clear that the data warehouse market is in need of technology 
that offers better scalability without resorting to custom hardware.  Fortunately, there are two 
software tactics that offer the possibility of dramatically better performance.   This section 
discusses these tactics, which can be used individually or together. 
 
Vertical partitioning via column-oriented database architectures [6]: Existing shared-nothing 
databases partition data “horizontally” by distributing the rows of each table across both multiple 
nodes and multiple disks on each node.  Recent research has focused on an interesting 
alternative: partitioning data vertically so that different columns in a table are stored in different 
files.  While still providing an SQL interface to users, these “column-oriented” databases, 
particularly when coupled with horizontal partitioning in a shared-nothing architecture, offer  
tremendous performance advantages.  
 
For example, in a typical data warehouse query that accesses only a few columns from each 
table, the DBMS need only read the desired columns from disk, ignoring the other columns that 
do not appear in the query.  In contrast, a conventional, row-oriented DBMS must read all 
columns whether they are used in the query or not.  In round numbers, this will mean that a 
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column store reads 10 to 100 times less data from disk, resulting in a dramatic performance 
advantage relative to a row store, both running on the same shared-nothing commodity 
hardware. 
 
Of the systems mentioned in the above table, only SybaseIQ and Vertica are column stores.  
However, Vertica is alone in employing the more scalable shared-nothing architecture. 
 
Compression-aware databases [1]:  It is clear to any observer of the computing scene that 
CPUs are getting faster at an incredible rate.  Moreover, CPUs will increasingly come packaged 
with multiple cores, possibly 10 or more, in the near future.  Hence, the cost of computation is 
plummeting.  In contrast, disks are getting much bigger and much cheaper in cost per byte, but 
they are not getting any faster in terms of the bandwidth between disk and main memory. 
Hence, the cost of moving a byte from disk to main memory is getting increasingly expensive, 
relative to the cost of processing that byte.  This suggests that it would be smart to trade some 
of the cheap resource (CPU) to save the expensive resource (disk bandwidth).  The clear way 
to do this is through data compression. 
 
A multitude of compression approaches, each tailored to a specific type and representation of 
data, have been developed, and there are new database designs that incorporate these 
compression techniques throughout query execution. In round numbers, a system that uses 
compression will yield a database that is one third the size (and that needs one third the disks). 
More importantly, only one-third the number of bytes will be brought into main memory, 
compared to a system that uses no compression.  This will result in dramatically better I/O 
performance. 
 
However, there are two additional points to note.   First, some systems, such as Oracle and 
SybaseIQ, store compressed data on the disk, but decompress it immediately when it is brought 
into main memory.  Other systems, notably Vertica, do not decompress the data until it must be 
delivered to the user.  An execution engine that runs on compressed data is dramatically more 
efficient than a conventional one that doesn’t run on compressed data. The former accesses 
less data from main memory, and copies and/or writes less data to main memory, resulting in 
better L2 cache performance and fewer reads and writes to main memory.   
 
Second, a column store can compress data more effectively than a row store.  The reason is 
that every data element on a disk block comes from a single column, and therefore is of the 
same data type.  Hence, a column-based database execution engine only has to compress 
elements of a single data type, rather than elements from many data types, resulting in a three-
fold improvement in compression over row-based database execution engines. 
 
What You Can Do 
 
The message to be taken away from this article is straightforward: You can obtain a scalable 
database system with high performance at low cost by using the following tactics. 
 

1) Use a shared-nothing architecture.  Anything else will be much less scalable.  
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2) Build your architecture from commodity parts.  There is no reason why the cost of a grid 

should exceed $700 per (CPU, disk) pair.  If you are paying more, then you are offering 
a vendor a guided tour through your wallet. 

 
3) Get a DBMS with compression.  This is a good idea today, and will become an even 

better idea tomorrow.  It offers about a factor of three performance improvement. 
 

4) Use a column-store database.  These are 10 to 100 times faster than a row-store  
database on star-schema warehouse queries. 

 
5) Make sure your column-store database has an executor that runs on compressed data.  

Otherwise, your CPU costs can be an order of magnitude or more higher than in a 
traditional database. 
 

To the extent that you are using fewer than all five tactics, you are either paying too much or 
unnecessarily limiting your scalability.  We would encourage you to grade your current DBMS 
warehouse environment by giving it one point for each of the five requirements it meets above. 
There is at least three orders of magnitude difference in price/performance between a score of 0 
and a score of 5.  Hence, you can see how far off you are from what is possible. 
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