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There exists a black kingdom which the eyes of man avoid There are many modern systems where the capability of local
because its landscape fails signally to flatter them. This darkness, nodes to generate data far Outstrips the resources available to

which he imagines he can dispense with in describing the light, is ; ; _
error with its unknown characteristics... Error is certainty’s con- transmit or store that data. Nodes in a sensor network, for ex

stant companion. Error is the corollary of evidence. And any- ample, typically have processors that run at SeV?ral megahertz,

thing said about truth may equally well be said about error: the with data collection hardware capable of collecting many kilo-

delusion will be no greater. (Pref samples per second, but radios that only transmit kilobytes per
rerace

second aggregate across all of the nodes in the network. Worse
yet, these nodes are battery powered, and, when sampling at
Abstract maximum rates, only have sufficient energy to last for a few
days [46]. Similarly, routers on the Internet can produce huge
Traditional database systems, particularly those focused oamounts of network monitoring traffic, so much so that the
capturing and managing data from the real world, are poorlyinks which that traffic is transmitted across can be easily satu-
equipped to deal with the noise, loss, and uncertainty in datdated. Administrators of large networks typically apply simple
We discuss a suite of techniques based on probabilistic modechniques (like random sampling) to choose which statistics
els that are designed to allow database to tolerate noise ah@ collect [40]. Streaming database systems have much the
loss. These techniques are based on exploiting correlatiors&me problem, where the need to shed load [10] and drop or
to predict missing values and identify outliers. Interestingly,aggregate historical data [52] has been noted.
correlations also provide a way to give approximate answers In addition to the challenges presented by limited re-
to users at a significantly lower cost and enable a range of neg®ources, data from real world environments is often noisy,
types of queries over the correlation structure itself. We illusdossy, and hard to interpret. This noise and uncertainty can
trate a host of applications for our new techniques and queriee misleading, particularly when the user is summarizing and
ranging from sensor networks to network monitoring to datsaggregating data using a high-level language like SQL. For
stream management. We also present a unified architectuexample, the California Department of Transportation main-
for integrating such models into database systems, focusing fiins a database of current road speeds from about 10,000
particular oracquisitional systemshere the cost of capturing traffic sensors on California highways [9]. On a recent visit
data €.g, from sensors) is itself a significant part of the queryto their website, 60% of sensors were missing data. Such loss

to a Modern Mythology Louis Aragon, French Poet, 1926.)

processing cost. could cause users’ queries to pick congested routes if sensors
on those routes happen to be offline. If the query system could
1 Introduction insteadnfer that missing speeds along certain routes are likely

The visi f ubiquit i . i dinf to be slow based on past behavior or speeds from online sen-
€ vision ot ubiquitous computing promises to spread Infor-, o query results would be much more likely to reflect reality.
mation technology throughout our lives. Though this vision

20 ; Besides failures, real-world networks often produce data
can be c_ompellmg, it also threate_ns 10 over_whelr_n us with Rhat is simply wrong. For example, in a sensorpnetwork de-
flood of information, much of which is spurious, irrelevant, ployment on Great buck Island (off, the coast of Maine) [63
or misleading. Thus, the challenge of realizing this vision IS(18], researchers noted that about 40% of the sensors produéed
shep?lratl(;]gftge rele\r/]an(;, timely, and useful |nformat|ohn outo rratic temperature and humidity readings at some point;
this flood of data. The data management community has ma 5 . : - . iy
P c ; .~ though such readings sometimes precipitated node failure, in
§|gnlf|cant progress towards achieving this goal — by provid, e? cases nodes %therwise contri)nueg to function normally.
ing tools that load and clean the data, languages and systerﬁ%1 ’

that can query the date.g.[52, 36, 10, 38]), and algorithms he data acquisition system could detect and filter such out-

that mine the data for patterns and relationships that are Ap_rs, It C.OU|d inform a user.of b3 fa||u_re and conserve band-
interest [33]. width being used to transmit bad readings.

These efforts have largely been focused on mitigating data V|\(/je adgresg all (I)If thesdefprob_ler_Pﬁ_ by blgldl'”ﬁ’mek)f the
complexity once it has been captured and stored inside of a trj{0r'd as data s collected from It. This model allows us to cap-
ditional computing infrastructure. In contrast, we are focusin ure the correlations an(_j statistical relat|onsh|.p.s petween at-
on techniques designed to take an active role in managing thi§iPutes collected by devices. We focus mobabilistic mod-

wealth of data by managing when, where, and with what fre €1S: Where the value of each attribuéed, temperature, light)

guency data is acquired from distributed information systems'.S a proba_bility distrib_ution that re_zflects the most likely value
of that attribute, possibly depending on the values of other at-

"Work done while the authors were visiting Intel Research Berkeley.  tributes (theidependenis such as the time of day or behavior




of another node in the network. Such dependenciespor lect data from a sensor network.
relations can be exploited to efficiently answer queries and _
enable new query types that explore the relationships betwee%i1 Probabilistic models
attributes. Models are built by periodicaljpservingvalues We denote a model as @robability density functior(pdf),
of one or more attributes(g, by acquiring a reading from a p(X1, X»,...,X,), assigning a probability for each possi-
sensor) and using those observations to adjust the probabilityle assignment to the attributés, .. ., X,,, where each¥X;
distributions of the observed attributes and their dependeets an attribute at a particular senserd, temperature on sen-
Models offer three distinct benefits: sor number 5, bandwidth on link A-B). This model can also
. - . incorporatehidden variabledi.e., variables that are not di-
1. They make queryingnore efficient By exploiting cor- rectly observable) that indicate, for example, whether a sensor

relations between attributes, it is often possible to use obg giving faulty values or a node is subject to a denial of ser-

servganon_s of @ small number of attributes to prow_de aPyjice attack. Such models can be learned from historical data
proximations of the values of a large number of attributes

For example. if several temperature sensors in a b iIdinUSing standard algorithmse.g, [50]).
or example, If several temperature Sensors in a buliding Answering queries probabilistically based on a pdf is con-

read approximately the same temperature day after day, & .
ptually straightforward. Suppose, for example, that a query
0, -
ggg/? n(thgxgggség?rﬁon?é tgotr/](;l ?;(I;Iuc:?iﬁs)egoutﬁi :gfégrgsks for an approximation to the value of a set of attributes
9 t within +e of the true value of each attribute, with confi-
have about the same value.

. . dence i.e., probability of being correct) at least— §. Using
2. They allow the database system to provpiebablllls- standard probability theory, we can use this pdf to compute
tic guarantees on the correctness of answerdJnlike

existing database systems, which provide the illusion mlhe expected valugy;, of each attribute in the query. These
ng Yy ' provide will be our reported values. We can then use the pdf again
precise answers, even when data is missing or nodes

faulty, probabilistic models provide probabilistic uaran?{g compute the probability tha, is within  from the mean,
Y. P P P 9 P(X; € [pi — € u; + €]). If all of these probabilities meet

tees on answers, telling the user the probability th""t"’”:)"’lr(')r exceed user specified confidence threshold, then the re-

:;:::I;r %t:':le%u;[/ill\(]aelubeagvlaf(fjeE)Snbyarsqoggstgﬁ/gt?gf;&oormnow uested readings can be directly reported as the mean$
P P e model’s confidence is too low, then we require additional

3. They allow the database system to ansnew types of €30GS Defore answering the query
' y Y yp Choosing which readings to observe at this point is an opti-

queries For example, a model can detect certain very .7 . ) i . .
lkly values (sga, by obsening past coreltons 22197 POBET: 1 gee s o pick e best st o attes
with other sensors) and flag them as poteriatliers ’ 9 d

Similarly, a model can reveal relationships between Ole_brlng the model’s confidence up to the user specified threshold

vices that indicate, for example, that a particular sensoFor\f\‘/" ofthe quetr%/ predlcattes.h . ¢ te th red
is redundant or that a pair of network links are in noway ''€ €an use the same technique 1o compute the expecte

independent of each other. Finally, a model can ofterpuM OF average of several attributesy(, temperature ok
predictthe value of a particular attribute as some point 0fdlfferent sensors) by exploiting linearity of expectation, yvh|ch
time in the past or future. saysE(A; + ... + A) = E(A1) + ... + E(Ay) and using
the standard expression for the variamgegf a sum to com-
In this paper, we briefly summarize one model, calledpyte oure, § bound,i.e, o(A; + ...+ Az) = Zf:IU(Ai) +
BBQ [22] which we have studied in detail to provide efficient 1;21 Z%?:l cov(A;, A;). We can also compute a confidence
guery answers in sensor networks. We then show how oug J

i b lized t ide the other advant at a pgrticular boolean predicated, temp> 25)is true by
Ideas can be generalized 1o provide Ihe otner advantages tegrating over area of the pdf representing the region where
scribed aboved.g, various kinds of probabilistic guarantees the predicate is satisfied
and support for new types of queries) in a variety of domains '
and applications beyond sensor networks. We argue that ari2 Example: Gaussians
resource limited environment can benefit from our techniques, s section, we describe the time-varying multivariate
_ We also show how to adapt a range of techniques, based QBayssians as a type of model. This is the basic model used
ideas from the machine learning and data mining communi;, BBQ [21], and we summarize it here to provide a con-
ties, that allow us to improve the predictive power of models,crete example of one kind of model. A multivariate Gaussian
represent correlations more compactly, and select and trf?‘g'l‘mereafter, just Gaussian) is the natural extension of the famil-
models that are most appropriate for the data being modelegh \,nigimensional normal probability density function (pdf),
Though such techniques sometimes are directly transferablg,o\wn as the “bell curve”. Just as with its 1-dimensional
from these other domains, they often require significant rézounterpart, a Gaussian pdf ovkattributes, X, . . ., X, can
tooling to deal with limited resources, data acquisition issuesyg expressed as a function of two parameters: a lefhgte-
and to enable integration into a SQL-based database systemMy of meansy, and ad x d matrix of covariancesy. Fig-

ure 1(A) shows a three-dimensional rendering of a Gaussian
2 Background over two attributesX; and X5; the z axis represents thant
In this section, we summarize the basics of probabilistic modédensitythat X, = x and X; = y. Figure 1(B) shows a con-
els and show how they can be used to answer queries. We altaur plot representation of the same Gaussian, where each cir-
summarize our previous work on the BBQ system, which iscle represents a probability density contour (corresponding to
an example of a probabilistic model tuned to efficiently col-the height of the plot in (A)).



2D Gaussian PDF With High Covariance (5)

Gayssian PDF over X, X, where S(X, X, is Highly Posiive eralized to various different models that may be more suitable
in different environments and for different classes of queries.
We will revisit this issue in Section 5. In the next two sec-
tions we look briefly at some of the technical details involved
in creating and maintaining the Gaussian model used in BBQ.

2.2.1 Learning the model

5 10 15 20, 25 30 35 40 Typically, probabilistic models are learned from some set of
Caussian POFower X afler Some ime training data. In BBQ, this training data consisted of read-
ings from all of the monitored attributes over some period of
time. For example, with a Gaussian model, initial means and
covariances can be computed from training data using stan-
dard statistical algorithms. Thus, for the specific model used
in BBQ, we need to capture training data for some period of
time before we can begin predicting values or exploiting cor-
TR relations to avoid unneeded acquisitions. We are exploring

" techniques for interleaving model construction and query pro-

Figure 1:Example of Gaussians: (a) 3D plot of a 2D Gaussian with cessing when possible, as described in Section 6 below.
high covariance; (b) the same Gaussian viewed as a contour plot;

(c) the resulting Gaussian oveY, after a particular value ofX;  2.2.2 Updating the model
has been observed; finally, (d) shows how, as uncertainty akiput
increases from the time we last observed it, we again have a 2D Ga
sian with a lower variance and shifted mean.

Thus far, the model we have described represgpasial cor-
U%elation in a network deployment. However, many real-world
systems include attributes that evolve over time. For exam-

Intuitively, 1 is the point at the center of this probability Ple, in a sensor network deployment in our lab, we noted
distribution, andy> represents the spread of the distribution. that the temperatures have both temporal and spatial corre-
Theith element along the diagonal Bfis simply the variance lations [19]. Thus, the temperature values observed earlier in
of X;. Each off-diagonal element[i,j],i # j represents time should help_us_ estimate the temperature later in time. A
the covariance between attribut&s and X;. Covariance is dynamic probabilistic modedan represent such temporal cor-
a measure of correlation between a pair of attributes. A higtielations by describing the evolution of this system over time,
absolute covariance means that the attributes are strongly cdlling us how to compute(Xi™',..., X/*1 | o!-) from
related: knowledge of one closely constrains the value of thé(X{, ..., X}, | o'*), whereo' is the set of observations
other. The Gaussians shown in Figure 1(A) and (B) have &ade over the network up to tinte
high covariance betweeli; andX,. Notice that the contours ~ One common dynamic model iSvarkovianmodel, where
are elliptical such that knowledge of one variable constraingiven the value ofall attributes at timef, the value of the
the value of the other to a narrow probability band. attributes at timet + 1 are independent of those for any

We can use historical data to construct the initial reprelime earlier thant. This assumption leads to a simple
sentation of this pdp. This historical data is typically col- model for a dynamic system where the dynamics are sum-
lected as a part of a short observation phase using data eftarized by a conditional density called ttransition model

traction tools (in the case of our sensornet deployments, wa(X1*",..., X! | X{,..., X}). Usinga transition model,
have typically used a simple selection query in TinyDB [47]). we can compute(X{*", ..., X!F! | ol!) using the stan-

Once our initialp is constructed, we can answer queries usingdard probabilistic technique ofarginalizationby integrating

the model, updating it as new observations are obtained frorihe transition model over the attribute values at time

the sensor network, and as time passes. We explain the de- This approach assumes the transition model is the same for
tails of how updates are done in Section 2.2.2, but illustrate iall times¢. Often, this is not the case — for example, in an
graphically with our 2-dimensional Gaussian in Figures 1(B)outdoor environment, in the mornings temperatures tend to in-
- 1(D). Suppose that we have an initial Gaussian shown irtrease, while at night they tend to decrease. This suggests that
Figure 1(B) and we choose to observe the variabjegiven  the transition model should be different at different times of
the resulting single value ok; = z, the points along the the day. One way to address this problem is by learning a dif-
line {(z, X2) | VX5 € [~o0, 00]} conveniently form an (un- ferent transition modeb!(X!*! | X*) for each hour of the
normalized) one-dimensional Gaussian. After re-normalizingday. At a particular time, we simply use the transition model
these points (to make the area under the curve equal 1.0), weod(t,24). This idea can, of course, be generalized to other
can derive a new pdf representipgX, | X; = z), which  cyclic variations.

is shown in 1(C). Note that the mean &% given the value Once we have obtaineg X/t ... X!+l | olt), the
of X, is not the same as the prior meanof in 1(B). Then,  prior pdf for timet + 1, we can again incorporate the measure-
after some time has passed, our belief ab%y® value will  mentso’*! made at time + 1 obtainingp(X!**, ... Xt |

be “spread out”, and we will again have a Gaussian over tw@!--!*+1), the posterior distribution at time+ 1 given all mea-
attributes, although the mean and variance may have shifteslirements made up to time- 1. This process is then repeated
from their initial values, as in Figure 1(D). for time ¢t + 2, and so on. The pdf for the initial time= 0,

Of course, this is but one example of many different typesp(X?, ..., X?), is initialized with the prior distribution for at-
of models that could be used. Our basic approach can be getributes Xy, ..., X,,.



2.3 Architecture Probabilistic Queries Query Results
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"SELECT nodeld, User é :gg SZZ//O »
Given this basic structure for models, we show how they fit temp +.1°C, conf(.95) l T 2806 00% i

. e s . . . WHERE nodeID in {1..8}" »
into a probabilistic query answering architecture. Parts of this 4 BRL100%
architecture were laid out in our work on BBQ [22], though

we have extended the architecture here to support several new

Query Processor

quires no changes to the query processor and can reuse the [ternp,4])" 4 temp = 22.1"

code that interfaces with and acquires particular tuples. Predicate
Figure 2 illustrates our basic architecture through an exam- |- Nedd g

kinds of queries as described in Section 4 below. One of our Probabilistic Model and Planner
specific goals is for our architecture to be model-agnoséc, Observation Plan Data
.. . " "1, voltage = 2.73
as long as a new model conforms to a basic interface, it re- ‘gg};:g:;g: 2. voltage - 2,68
|

Data Mgmt

ple of a probabilistic model running over a sensor network. — [Acston ]
For other environments that involve data acquisition (as we
note in Section 3 below), this basic architecture applies un- v
changed, with the main difference being the data acquisition &
m_eChan'Sm: In non-acquisitional env',ronme,nts’ models Caf—‘igure 2: Our architecturesfor model-based querying, shown as an
still play an important role, as we note in Section 3. example running on top of a sensor network.

Users submit queries to the database as in a traditional
database, though we allow some unusual types of queries (see ample, on sensor boards from Crossbow Corporation for
Section 4). One such class of queries is standard SQL queries Berkeley Motes [15], the temperature sensor requires or-
augmented with error tolerances and target confidence bounds ~ders of magnitude more energy to sample than simply
that specify how much uncertainty the user is willing to toler- ~ reading battery voltage. A primary goal of our work is
ate; such bounds will be intuitive to many scientific and tech-  to use models to help decide which sensors are signifi-
nical users, as they are the same as the confidence bounds used cant and worth acquiring, given differential data acquisi-
for reporting results in most scientific fields (c.f., the graph  tional costs and the user’s data demands (as specified in
shown in the upper right of Figure 2), though we are also ex- queries).
ploring techniques, such as visualization, to allow the layperThus, one of the key properties of many probabilistic models is
son to interpret query results. that they can capture correlations between different attributes.

In this example, the user is interested in estimates of the In general, the software that runs on each of the nodes in the
value of sensor readings for nodes numbered 1 through Setwork (shown in the small box on the bottom-left of Figure
within .1 degrees C of the actual temperature reading witlp) includes some code to facilitate model-based query execu-
95% confidence. After consulting the model, the system retion. The predicate checkeis in charge of applying proba-
alizes that the model is not sufficiently accurate to answer theilistic predicates to determine if a particular query answer is
query with the specified confidence, and it decides that thevorth transmitting — this is needed to help execute continuous
most efficient way to achieve that confidence level is to readjueries that are looking for outliers or other exceptional con-
battery voltage from sensors 1 and 2 and temperature fromitions. It executes against a local image of the model which
sensor 4. Based on knowledge of the sensor network topologgaptures the state and behavior of the local node and its re-
it generates anbservation plarthat specifies how to acquire lationship to other nodes. Thiata management layés in
those samplese(g, which route to use to visit the relevant charge of managing typed tuples of data, which it builds up by
sensors), and sends the plan into the network, where the apalling down into theacquisition layer Note that, in the ex-
propriate readings are collected. These readings are used d&mnple described here, the predicate checker and local model
update the model, which can then be used to generate quesye not needed, because (in this case) the model is stored cen-
answers with specified confidence intervals. trally. In general, centralized models make query planning

Notice that the model in this example chooses to observeasier since they have access to state in a single location, but
the voltage at some nodes despite the fact that the user’'s queaye more expensive (in terms of communication or energy),
was over temperature. This happens for two reasons: because they must collect that state to a single location rather

1. Correlations in value: Battery voltage and temperature Storing itlocally at the nodes. o
often vary together, since batteries are somewhat higher There are thus four major steps to query processing in our
voltage at warmer temperatures. For many types of bat@rchitecture:
teries (such at the lithium-ion cells used in many mote 1. Using the model, the query optimizer generates an ob-
deployments), this effect is quite pronouncedg( we servation plan which will allow it to answer the query to
observe about 1% variation per degree on motes). Local  within the specified bounds at a minimal cost.
variations in voltage are much more likely to be due to 2. The plan is executed by the network, collecting data from
temperature fluctuations than decreased capacity, since if  relevant nodes (and possibly filtering out some results by
battery voltage drops at all as a battery’s storage dwin-  consulting an in-network version of the model).
dles, it will vary over a much longer time scale. 3. The model is updated with results collected from the net-

2. Cost differential: Depending on the specific type of work.
temperature sensor used, it may be much cheaper to sam4. Using basic probability computations (Section 2.1), the
ple the voltage than to read the temperature. For ex-  query answer and confidence bounds are computed.




We note that he user in Figure 2 could have requested 100%
confidence and no error tolerance, in which case the model
would have required us to interrogate every sensor. Con-
versely, the user could have requested very wide confidence
bounds, in which case the model may have been able to an-
swer the query without acquiring any additional data from the
network.

Given this basic introduction to our architecture, we now
turn our attention to some of the ways in which our techniques
can be applied.

3 Applications

Systems that exploit statistical modeling techniques and opti-
mize the utilization of a network of resource constrained de-
vices, such as BBQ, could have significant impact in a num-
ber of areas, as outlined by some case studies described in this
section. Although our architecture is targeted primarily at ac-
quisitional environments, some of the systems we discuss do
not fall into this category (e.g., database cost estimation) angigure 3:Screenshot from the California Department of Transporta-
can still benefit from our core probabilistic modeling technol-tion road sensor website in the Bay Area. Green dots represent roads
ogy. where the traffic is travelling faster than 45 MPH; yellow repre-
sents traffic moving 15-45 MPH, and red represents traffic moving
at speeds less than 15 MPH. Gray circles with black dots (added for
We begin with several sensor-network applications: clarity) represent offline sensors.

Building control: Sensor networks have a humber of appli-

cations in control and automation in buildings. For example

rather than monitoring temperatures at just a few points in %Shan Franqsco area during rush hour on 8/4/04. In this case,
building, as is done in most HVAC systems today, the sen. e larger circles to the left and right of the roadways represent

sor network can monitor temperatures throughout the buildzhe speeds on the two sides of the freeway; green and yellow

ing, and regulate more effectively the power generation an&lrcles (the lightest in color, when viewed in grayscale) repre-

output of heating and air conditioning systems [44]. Batterysen: sloeeds abO\(/je 1(53 MPH,twher%gstreéj ((lj(ark) cirqlels, reprt?]-
powered sensors are desirable because they can be deplo slower speeds. Gray (intermediate darkness) circles wi

much more cheaply in existing building infrastructures. How- ack dots in the middle represent offline sensors. Notice that

ever, for batteries to be cost effective, they must last a fairlya few sensors at the west edge of the Bay Bridge indicate traf-

long time. Our modeling techniques make it possible to cap!'c there is slow, but that many sensors around it are offline. It

ture information that could be used in such a building controfS Not c_:lear if travellers shquld avoid the Bridge, or if this is
environment (with bounds on the error and probability of ex-2 localized anomaly that will not cause long delays. Feeding

ceeding that error) while visiting a small humber of nodes,SuCh data to a route plf’;\r)nir_]g algorithm_is Iike]y to cause itto
thus, significantly extending the lifetime of the network. 40 Very strange things if it tries to apply linear interpolation or
Sensor failure detection: In long-term environmental sens- other simple techniques to guess traffic speeds. In contrast, a

ing deployments, sensors are known to be failure prone [63 'ré)r%a(l))m?r:g ?(;)rﬂke)lir:::gvﬁﬁ ?hi{%g&n;rgﬁeas f\gvr\'/e(; mg i?)?jz(;rs
in many cases these failures are “Byzantine” — that is, node ! '

do not stop, but rather simply produce erroneous output.o infer the missing speeds. o )
Such failures may show up as outlier values, or, more genStructural and factory health monitoring: A popular appli-
erally, generate sensor readings that follow unexpected pagation for sensor networks {weventative maintenand8?],
terns. Thus our outlier detection queries should be able t¥here structures and industrial equipment are monitored for
detect them. Here, probabilistic models and statistical techearly signs of failure. A widely used technique for failure
niques provide the basis for detecting such unexpected pafletection involves measuring changes in the phase between
terns. Using fault injection techniques, and by studying fail-vibration signals from groups of sensors — the intuition be-
ures from previous deployments, we can build alerting tooldnd that if two parts of a piece of equipment are solidly con-
that can detect failed and misbehaving sensors. nected, they will vibrate in-phase, but if they suddenly become
Highway traffic monitoring and optimization: Aswe noted ©ut-of-phase with each other, that is a sign that something is
in the introduction, traffic sensor data (as currently made availvrong. Probabilistic models provide a convenient way to de-
able by the California Department of Transportation [9]), con-términe the components that are expected to vibrate in-phase
sists of data from hundreds or thousands of sensors (typiith each other, and outlier detection techniques like those
cally, these are metal loops embedded in the freeway thatSed for sensor failure detection can identify low-probability
use inductance to record as cars pass over them). Bas&fanges in the phase structure, indicating the possibility of
on our studies over several days of the data from these welfPending failure.

sites, it appears as though such sensors are often offline lntrusion detection and tampering: As a part of an involve-
Figure 3 shows a screenshot from a CalTrans Java appletent in MIT's new Center for Information Security and Pri-

3.1 Sensor applications

(http://www.dot.ca.gov/traffic/ ) looking at the



vacy (CISP) [49], we are investigating techniques for intrusionin providing probabilistic guarantees to the user.
detection in wireless and sensor networks. In sensor networkgpad shedding in streams: Load-shedding is cited as a re-
there are a range of physical attacks that involve tamperinguirement in many stream-based query processors [52, 10].
with devices or sensors. Examples include intruders seekinhe Aurora [10] project proposesemantic load shedding
to hide information about their presence or trying to cause avhere input tuples that correspond to particular output values
control or regulatory system to misbehaeeg, people often  are considered more important than other tuples (and are thus
'hack’ computers in their cars to increase performance, possihot shed). The authors of Aurora propose a scheme where the
bly decreasing safety and increasing emissions). Outlier anduery plan is “reversed” to determine such input-output map-
influence queries have potential application in detecting thipings, but for general query plans, such an approach is infeasi-
sort of tampering. ble, since operations like joins and aggregates are not readily
invertible. As a more tractable alternative, we can use prob-
abilistic models to determine the relationship between inputs
There are also a wide range of non-sensor applications thand outputs, keeping input tuples that have a high probability
can benefit from our probabilistic model-based approach.  of mapping to valued outputs. These probabilistic relation-
Network monitoring: Network monitoring, even in wired ShipS may include correlations between different fields in the
networks, has the potential to consume a significant proporinput tuples, so that, for example, the model may determine
tion of available bandwidth. For example, on a typical edgethat intermediate join tuples have a low probability of produc-
gateway in a large university, per-flow statistics are collectednd & high-value output, even though the base tuples of the join
to identify users and applications that are potential security?oth had a high value prior to the join.
concerns or who are over-utilizing the network. Such statisMonitoring distributed streams: Recently there has also
tics constitutes tens of MB/sec of data, and, even on a wellbeen an increasing interest in distributed data streams,
provisioned inter-university network, collecting a complete setdata streams that originate and are processed in a distributed
of such statistics exhausts the CPU and bandwidth capabifashion [23, 13]. Though similar to sensor networks in
ities of edge routers [40]. Current practice is to randomlymany aspects, the optimization goal in such systems is net-
sample a subset of flows and store just the sample. Simwork latency, not the battery life of the sensors. The IrisNet
larly, in wireless networks, the collection of time-varying link project [23] proposes use of caching to reduce the latencies
quality and congestion information can impose a significanincurred in query answering. We believe a model-based ap-
overhead, especially in dynamic networks where such inforproach can lead to both better answer quality, and a reduction
mation may change rapidly, requiring frequent link-sampling.in latencies, especially in applications such as the motivating
We can use probabilistic modeling techniques to estimate anplarking space findeapplication of IrisNet.
track loss rates, congestion information and security concern :
(e.q, types of flows that are likely to use unusual amounts of& New queries
bandwidth or are otherwise outliers), exploiting correlations toThese applications require a range of new queries that non-
avoid acquiring data that can be inferred from a well-choserprobabilistic database systems are ill-equipped to answer. In
subset of available readings. this section, we summarize the range of new queries that we
Database summaries:Capturing the joint data distribution are working to support.
of multi-dimensional data sets through compact and accuraterobabilistic, approximate queries: The most basic class of
synopsess a fundamental problem arising in a variety of prac- queries that we anticipate users to ask are probabilistic and
tical scenarios, includinguery optimizationquery profiling  approximate variations of traditional SQL queries. Examples
andapproximate query answerin@ost-based query optimiz- of such queries include queries asking femperatureat a
ers employ such synopses to obtain accurate estimates of inertain location in a building, caverage speedlong a seg-
termediate result sizes that are, in turn, needed to evaluate theent of a highway. We can support such queries by using
quality of different execution plans. Similarly, query profil- additional predicates in SQL expressions that specify the con-
ers and approximate query processors require compact dafidence that the user wants in the answer, or the error she is
synopses in order to provide users with fast, useful feedbacWilling to tolerate. This class of queries covers traditiose
on their original query [11, 59]. Such query feedback (typ-act queries which can be asked by setting the confidence re-
ically, in the form of anapproximate answégrallows OLAP  quired to 100%.
and data-mining users to identify the truly interesting regions  Qur initial effort in BBQ provided support for this type of
of a data set and, thus, focus their explorations quickly and efquery; Figure 4 shows one advantage of approximate queries:
fectively, without consuming inordinate amounts of valuableimproved performance. In this case, we ran three range
system resources. Further, users can make informed decisioggeries over temperature readings from a 11 node sensor de-
on whether they would like to invest more time and resourceployment in the Berkeley Botanical Garden. We trained our
to fully executing their queries. model for 20 days and ran test queries over a 10 day period.
The idea of using probabilistic modeling techniques toWe used pre-collected data so we could verify the accuracy
build synopses has already been explored [18, 27]. As thisf our approximate query answers during this test period. If
previous work shows, using probabilistic models to captureve had asked an exact query, we would have been required to
and exploit the correlations in the data can lead to significantlpbserve the value of every sensor at each point in time; using
more compact summaries. The techniques we have developedr Gaussian-based probabilistic model with queries specify-
can be directly applied in this context as well; in particular weing 95% confidence, we were required to observe the values
are interested in answering more complex queries as well asf only a small fraction of the sensors. The truth values of the

3.2 Non-sensor applications



predicates on the unobserved sensors could be accurately pta#t that can be reasoned about. For example, in a sensor net-
dicted by exploiting cross-sensor correlations (in all cases, wavork that has sensors for monitoririgmperature pressure

had less than the 5% allowed errors when we compared thendlight, but not for monitoringain, we can never “observe”
predicted predicate values to the actual values from the tesain directly, but it may be possible to infer whether it is rain-
data). Notice that different predicates require observation oing or not based on the values of the observable variables.
different numbers of sensors at different times of day — this isThere has been much work on hypothesizing about hidden
because of the natural temperature distributions in the garderariables (in the above example, we knew beforehand about
that our model is able to exploit. For example, during the dayexistence of an unobservable variable; there may be cases
the temperatures are typically significantly higher than the topvhere we have first infer that a hidden variable exists), and
end of the range specified in first predicate (16-17 degrees)earning structures containing them [25]. We expect to be able
Because of this, during the day, very few observations need ttw leverage these existing techniques in our work.

be made to ascertain that the predicate is false with sufficierhfluence queries: Use of probabilistic models also opens up
confidence. avenues for asking sophisticated analysis queries. One such
class of queries armmfluence querigswhere the user might
want to know which attributes are most closely correlated with
the value of a particular attribute. Such queries can be used to
help infer causality or determine when sensors in an area are
redundant. For example, a user might ask the question: “What
percentage of the traffic on linkis predicted by the traffic on
links 7 andk over all time?”

5 Challenges

Given these applications and queries, we now discuss some of
the challenges they present, followed by a set of techniques
we are exploring to address these challenges.
‘ Model selection: Choosing the best model for the given query
0:00 6:00 . . . .
Time of Day workload and environment is a key issue. The choice of model

Figure 4: Percentage of observed sensors versus time of day for &1€CtS many aspects of our approach:
36 hour period over 11 sensors deployed in the Berkeley Botanical * Accuracy of the answerdRecall that we provide prob-
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Garden for three different range predicate queries. In this case, we
setd = 5% (95% confidence).

Outlier queries: Outliers are essentially events of low prob-
ability, and use of probabilistic models provides an excellent
mechanism to detect outliers. To detect outliers, the user could *
ask the system to report whenever any attribute value occurs
that has a low user-specified probability of occurrence, or that
differs from its expected value by more than some threshold.
As an example, a user might register a continuous query that
reports any time the bandwidth on their wireless network is
more than three times the expected value for the current time
of day. Note that, outlier detection will typically require con- ¢
tinuous observation of the underlying attributes at the motes,
and the main advantage of using models in this case would be
to save communication cost (though knowledge of how often,

abilistic answers to the user, and the confidence in the
answers provided relies on the assumption that the un-
derlying data follows the model with sufficient accuracy.
If this is not the case, the answers provided by our models
could be erroneous.

Ability to answer certain types of querieSome mod-

els are more naturally suited to answer certain types
of queries. For example, outlier detection requires the
system to continuously sample sensors and check them
against the model to see if they have a low probability of
occurring. To do this efficiently, we may require a model
that is distributed across the nodes in a system.
Algorithmic aspects of querying:The techniques to
guery the model efficiently are highly dependent on the
choice of the model. The space and time requirements of
different models can vary by orders of magnitude.

and under what circumstances outliers are expected to occ®electing a suitable model for the data is one of the critical

may be used to reduce the observation costs as well).

challenges in the deployment of model-based systems.

Prediction queries: These queries estimate the value of anTransparency in model selection and usageAlthough dif-

attribute or predicate either (1) at a location where there aréerent models may be better suited for different environments
currently no available devices, or (2) at some time in nea@and for different classes of queries, developing a completely
future, with the best precision (and report that precision anthew system for each different model may be a waste of time
confidence in the estimate). For example, a user might askind development effort. Ideally, using a new model should
“What will the temperature in Room 938 be in 10 minutes?”involve little to no effort on the part of user. Given a large
Similarly, users might post “what-if” queries, to discover how variety of models that may be applicable in various different
a change in one attribute might affect other attributes — foscenarios, this may turn out to be a tremendous challenge.
example, in a system monitoring application, a user might asbata acquisition: Irrespective of the model selected, when
how increasing bandwidth on a given link would increase CPUand how to acquire data is one of the key issues that needs
utilization on a given processor. to be addressed. In most of the scenarios that we envision
Queries over hidden variables: In many scenarios, there a model-based system being deployed, the cost of acquiring
may be interesting variables that cannot be directly observednd/or transferring data is the dominant cost. For example, in



sensor networks, both the cost of sampling data, and the cost As an initial step towards supporting uncertainty in our
of communicating it to the basestation are high — for exam-query language, we currently represend bounds as addi-
ple, in a recent analytical study, we estimated that 98% of entional query predicates in SQL expressions, as in the query
ergy in a typical sensor network data collection scenario washown in Figure 2 above, but there are a number of outstand-
consumed sampling sensors or communicating. In distributethg questions about how a system deals with readings with
system where the data is being generated all over the worldliffering levels of uncertainty. For example, how can read-
minimizing thelatencyin answering the query could be the ings with different uncertainties from different sub-queries be
optimization goal. There are two aspects to this problem:  composed into a final query result? What should we do if our

« Whento acquire data: This is partly dependent on themodels cannot answerqueries t(_)agiven c;onfidence level? Are

model and the user query. To maintain the required conthere other representations besides confidence that we should

fidence in the answers it provides, the model could asi€onsider €.g, absolute or relative deltas)?

for more samples of the underlying data. In many casedExposing uncertainty to the user: One issue with exposing
we expect that the same confidence may be achieved iwncertainty to the user is that it requires him or her to un-
many different waysi.e., by sampling different sets of derstand the basics of probability. Although this may be ac-
attributes of the data. Because of this, the question o€eptable for scientific users who are used to statistical tests of
whento acquire data will typically be tightly integrated significance and other confidence metrics, for the lay-person,
with the question ohowit is acquired. such notions will be quite confusing. One possibility is to

» Howto acquire data: Most of the environments we haveconvert probabilistic answers to definite answers when result

discussed so far exhibit highly non-uniform cost struc-confidence is above a give threshold, suppressing the uncer-
tures. For example, in sensor networks, the costs of santainty report. Though at first this appears to be no better than
pling different attributes can be wildly different. Also, what traditional uncertainty-unaware database do, it is in fact
the multi-hop nature of communication in sensor net-substantially better as the user is never exposed to answers that
works means that sampling sensors closer to the base stdo not have a high probability of being true. For example, in
tion is cheaper than sampling far away sensors. the case of the California Freeway sensors given in the intro-
Issues surrounding when and how data is collected ar@uction, users WQU|dI’I’t receive average speeds for segments
amongst of the most interesting algorithmic challenges in th&/here the uncertainty was low, preventing them from inadver-
development and deployment of model-based systems. ~ tently using congested routes. o _
Training and retraining: In general, a probabilistic model ~ The other possibility we are exploring is to avoid these con-
is only as good at prediction as the data used to train it. Fof€rns through the use of visualization tools. Figure 5 shows a
models to perform accurate predictions they must be traine¥fisualization mockup of uncertainty in readings from a sin-
in the kind of environment where they will be used. That doesd!€ Sensor. It shows a stream of temperature readings from a
not mean, however, that well-trained models cannot deal witf§ingle sensor; the small circles represent points of time when
changing relationships over time; for example, the model wé€adings are actually captured. The contours represent differ-
used in BBQ[21] uses different correlation data depending ofnt levels of uncertainty in readlng_s. The darkest, narrowest
time of day. Extending it to handle seasonal variations, foand corresponds to a band of confidence about the most prob-
example, is a straightforward extension of the techniques wable value of the sensor —in this case, there is a 90% chance
use for handling variations across hours of the day. Typicallyhe true value of the sensor is in this band. The lighter, outer-
in probabilistic modeling, we pick a class of models, and usénost band captures the range of readings where the true value
learning techniques to pick the best model in the class. Thées with 99% probability. This visualization could be built
problem of selecting the right model class has been widely'Sing a probabilistic model such as our Gaussian model and
studied €.g, [50]), but can be difficult in some applications. ~Provides an intuitive representation of uncertainty.

In Section 6, we outline a more general Bayesian approach Figure 6 shows a second visualization of uncertainty in-
that integrates querying of the data with learning. formation for a query that collects readings from a set of geo-
Data model and query language Our initial efforts have fo- ~ graphically distributed sensors (in this case, sensors are shown
cused on building simple Gaussian models and demonstratirg? @ portion of Nantucket Island). In this case, colors repre-
that they can answer certain classes of queries [21]. Howeve$€nt temperature estimates; large solid circles represent the lo-
we do not have an integrated acquisition-oriented databagg@tions of sensors. White circles are inactive sensors that were
system that includes notions of uncertainty or modeling, andiot involved in data collection. Densely colored regions rep-
it is not clear how such models can be integrated in a gentesent areas where there is high certainty on the reading, with
eral way into the existing relational data model and querysparsely colored regions having low certainty. These certain-
languages. One possible data representation is to attachtigs can be derived, for example, from a probabilistic model
probability distribution to each data point — several proposihat represents correlations between the active sensors and the
als for probabilistic data models of this type have been mad#active sensors. Such a visualization allows users to quickly
in the literature [42, 3, 24, 27], and we may be able to adapdetermlne where more sensors may be needed, and to under-
this existing work. None of these approaches, however, fostand how well sensors are monitoring an area of interest.
cus on the data acquisition or model-learning issues. Instead, We are planning to build support for both types of uncer-
they concentrate representing user-specified uncertainty in tHginty visualization into our system.
database; the approaches do not help us address our princigadntinuous vs. snapshot queriesWe plan to support both
challenge of acquiring appropriate data to answer user queriesiapshot queriegg., one-time queries about the current state
at the desired confidences. of the system, and continuous queries, queries which the
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Figure 5:Mockup visualization of a display used to visualize uncer- .
tainty in a stream of readings coming from a sensor. B f E
e Figure 7: Structure of graphical model learned for the temperature
variables for a deployment in the Intel Berkeley Lab [56].
ated with a random variable. Edges in the graph represent
“direct correlation”, or, more formally, conditional indepen-
dencies in the probability distribution. Consider, for example,
the sensor deployment shown in Figure 7, where the attributes
Y 25°C are the temperatures in various locations in the Intel Berkeley
\ Lab. The graphical model in Figure 7 assumes, for instance,
that temperatures in the right side of the lab are independent
of those in the left side, given temperatures in the certey, (
Tyg andTy; are independent giveh g, T52, andT33).

The sparsity in graphical models is the key to effi-
cient representation and probabilistic querying [14]. In
discrete settings, for example, a naive representation of

X . T .
Figure 6: Mockup visualization of uncertainty display of a set of P(X1, X2, ..., X») is exponential in the number of attributes
temperature sensors (circles outlined in black) on Nantucket Island” While a graphical modelis linear inand, in the worst case,
Confidence in readings is represented by colored-dot density. exponential in the degree of each node. In addition to reduc-

ing space complexity, reducing the number of parameters can

user wants to know the answers of on a periodic basis. Deprevent overfitting when the model is learned from small data
pending on the optimization goals, these two classes of querigsts. Similarly, answering a query naively is exponential,in
pose different optimization challenges. The challenge withwhile in a graphical model the complexity is linearsinand
snapshot queries is to balance “push” vs “pull”. Pushing tocexponential in the tree-width of the graph.
much data towards the user can lead to wasted communica- In our setting, in addition to allowing us to answer queries
tion; on the other hand, having the system pull data for eversfficiently, graphical models are associated with a wide range
snapshot query could lead to unreasonable latencies. Forat learning algorithms [34]. These algorithms can be used
continuous query, we must figure out which nodes should stajgoth for learning a model from data, and to evaluate the cur-
active, when to do sampling and how to communicate the datgent model, addressing many of the model selection issues dis-
from those nodes to the base station. Though it is possible teussed above.
optimize the data acquisition process heavily, dynamic sensor- Additionally, graphical models allow us to efficiently ad-
net topologies can complicate matters. dress hidden variables, both in terms of answering queries and

: of learning about hidden variables [25]. In the example in Fig-
6 New teChnlqueS ure 7, each node could be associated with a faulty sensor hid-
In order to address the wide range of applications and newlen variable [43]. When a node is faulty, the sensed value is,
queries described in Sections 3 and 4, and to surmount ther example, independent of the true temperature. By exploit-
challenges in Section 5, it is insufficient to simply adapt ex-ing correlations in the temperatures measured by the nodes
isting methods in data bases, machine learning and distributeghd sparsity in the graphical model, we can efficiently answer
systems; we need new integrated approaches. This sectigtlier queries.
outlines techniques that can address some of these issues asFinally, there is vast graphical models literature for ad-
well as research directions that we are currently pursuing.  dressing other types of queries and models. For example,
these models can be extended to allow for efficient representa-

o _ tion and inference in dynamical systems [8, 17], and to answer
Probabilistic models are the centerpiece of our approach. lpaysal queries [58].

Section 2.1, we described very general probability distribu- . . .
tions, p(X1, Xa, ..., X,). Choosing the appropriate repre- 6-2 Integrating learning and querying

sentation for such distribution, allowing us to represent com-Thus far, we have focused on a two-phase approach: in the
plex correlations compactly, to learn the parameters effecfirst phase, we learn the probabilistic model, and in the sec-

tively, and to answer queries efficiently is one of the biggesond, we use the model to answer queries. This is an artificial

challenges in this research. Probabilistic graphical models ardistinction, raising many questions, such as when should we

a very appropriate choice to address these issues [57]. stop learning and start answering queries. We can address this

In a (probabilistic) graphical model, each node is associissue by applying 8ayesian learningpproach [6].

6.1 Representations for probability distributions
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Figure 9: A conditional query plan that uses different ordering of

query predicates depending on the time of day.

ically decrease. This integrated approach achieves two goals:
first, the learning phase is completely eliminated; second, us-
ing simple extensions, we can add dynamics to the parameter
values, allowing the model to change over time.
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© C) 6.3 Long-term query plans
Figure 8: Bayesian approach for learning the parameter of a coin: Modeling the correlations between different attributes in the
(a) prior distribution, Beta(1,1); posterior distributions over the coin system and also, the correlations across time, enables the
parameter after observing: (b) 1 head, 1 tail; (b) 2 heads, 1 tail; (b) query planner to consider a much richer class of execution
29 heads, 19 tails. plans than previously possible.

One such interesting class of execution plans that we have
explored in our previous work [20] areonditional plans
These plans exploit the correlations present in the data by in-
troducing low-cost predicates in the query execution plan that
are used to change the ordering of the more expensive predi-

p(© | x) x p(x | ©)p(O). 1) cates in the query pIan._ . _
As an example, consider a query containing two predicates
This process is repeated as new data is observed, updating tinp > 20° C, andlight < 100 Lux over a sensor
distribution over model parameters. network Let theapriori selectivities of these two predicates

Consider, for example, the task of learning the parameteb€ 5 and; respectively, and let the costs of acquiring the at-
of a biased coin; that is, the coin flips are independently d|3tr|butes be equal to 1 unit each. In that case, either of the two
tributed according to the usual binomial distribution with un- plans a traditional query processor might choose has expected
known parameter. Typically, for efficiency reasons, we choos€0st equal to 1.5 units (Figure 9). However, we might observe
a prior distribution that yields a closed form representation othat the selectivities of these two predicates vary considerably
the posterior in Equation (1); when such closed-form soludepending on whether the query is being evaluated during the
tions are possible, the prigf ©) and the likelihood function ~day or at night. For instance, in Berkeley, during Summer, the

p(x | ©) are said to beonjugate In our example, Beta distri- Predicate ortemp is very likely to be false during the night,
butions are conjugate to the binomial distribution of the coin.whereas the predicate dight s very likely to be false dur-
Figure 8 illustrates the process of Bayesian learning for ouig the day. This observation can be utilized to construct a
coin examp|e: We start with the Beta(l,]_) in Figure 8(a)1 hereponditionalplan as shown in the figure that checks the time of
the distribution over possible coin parameters is almost unithe day first, and evaluates the two query predicates in differ-
form. Figures 8(b)-(d) illustrate the posterior distribution overent order depending on the time. Assuming that the selectivity
the coin parameters after successive observations. As mog thetemp pred|cate is;5 at night, and the selectivity of the
coin flips are observed, the distribution becomes more peaketight  predicate |% during day, the expected cost of this
Thus, when answering a query about the coin after a few flipsplan will be 1.1 units, a savings of almost 40%.
our answer will be uncertain, but after making a larger num- More generally, in continuous queries, additional cost
ber of observations, the answer will have significantly lowersavings can be obtained by exploiting similarities between
variance. queries. For example, if we know that the next query will re-

These ideas can be integrated with our approach to avoiduire an attribute at a particular nogleand the current query
the need for a separate learning phase. Consider the Gaydan observes values at nearby nodes, then it is probably better
sian distributions used in the BBQ system. Initially, we mayto visit nodei as well in the current time step.
be very uncertain about the mean and covariance matrix of The optimal solution to such long-term planning problems
this distribution, which can be represented by a highly uncerean be formulated as larkov decision procesgviDP) [5,
tain prior (the conjugate prior for the covariance matrix is the60]. In an MDP, at each time step, we observe the current
Wishart distribution). Thus, when faced with a query, we will state of the system (in our setting, the current distribution and
need to observe the value of many sensors. However, usirguery), and choose an action (our observation plan); the next
Bayesian updating, after we observe these sensor values, state is then chosen stochastically given the current state (our
addition to answering the query at hand, we become more cenext query and distribution). Unfortunately, traditional ap-
tain about the mean and covariance matrix of the model. Everproaches for solving MDPs are exponential in the number of
tually, we will be certain about the model parameters, and thattributes. Recently, new approximate approaches have been
number of sensors that we will need to observe will automatdeveloped to solve very large MDPs by exploiting structure in

In a Bayesian approach, we start witlp@or distribution
p(©) over the model parametef3. After observing some
value for the attributes, we use Bayes rule to obtairpaste-
rior distribution over the model parametepg® | x):



problems represented by graphical models [7, 32]. Such aposes a number of sampling-based synopses that can provide
proaches could be extended to address the long-term plannirgproximate answers to a variety of queries using a fraction
problem that arises in our setting. of the total data in a database. As in our approach, such an-
swers typically include tight bounds on the correctness of an-
swers. AQUA does not exploit correlations. A few recent
Thus far, we have focused on algorithms where the probapapers [18, 27] propose exploiting data correlations through
bilistic querying task occurs in a centralized fashion, and weuse of graphical model techniques for approximate query pro-
seek to find efficient network traversal and data gathering tectsessing, but neither provide any guarantees on the answers re-
niques. However, in typical distributed systems, nodes alsturned. Recently, Considiret al.[41] and Gibbongt al.[53]
have computing capabilities. In such settings, we can obtaihave shown that sketch based approximation techniques can
significant performance gains by pushing some of the procesbe applied in sensor networks to compute aggregates. Oth-
ing into the network. ers have proposed approximation techniques for stream-query
In some settings, we can reduce communication by aggreprocessinge.g, Daset al.[16] and Motwaniet al. [51].
gating information retrieved from the network [45, 35]. We  Approximate and best effort caches [55, 54], as well as sys-
could integrate these techniques with our models by conditems for online-aggregation [61] and stream query processing
tioning on the value of the aggregate attributes rather thatp2, 10, 12] include some notion of answer quality and include
the sensor values. Such methods will, of course, increase otite ability to discard some tuples. Most related work focuses
planning space: in addition to finding a path in the network foron quality with respect to summaries, aggregates, or staleness
collecting the required sensor values, we must decide wheth@f individual objects already stored in the system, as opposed
to aggregate values along the way. to readings being actively acquired by the query processor.
More recently, a suite of efficient algorithms has been de- Several proposals for probabilistic data models have been
veloped for robustly solving inference tasks in a distributedmade in the literature. For example, ProbView[42] provides a
fashion [31, 56]. In these approaches, each node in the neflata model based on discrete pdfs, and shows how to answer
work obtains a local view of a global quantity. For example,@ humber of queries in such a domain. Getoor [26] explores a
each node computes the posterior probability over a subset #umber of prob§b|!|st|c extensions to the relational model,_and
the attributes given the sensor measurements at all nodes [5[}ows how statistical models can be learned from relations.
or each node obtains a functional representatog, (@ curve arbaraet al. [3] present some initial results on probabilistic
fit) of the sensor&.g, temperature) field [31]. Given such data models. Faradijiaet al.[24] present a data model based
distributed algorithms, we can push some of the probabilisti©n continuous pdfs. None of these approaches focus on the
query processing into the network, allowing nodes to locallydata acquisition issues, but rather on representing uncertainty
decide when to make observations and when to communicat# the database, and on types of query processing that can be
When integrated with a system like BBQ, these methods alapplied to probabilistic attributes.
low the user to connect to any node in the network, which can The probabilistic modeling techniques we describe are
collaborate with the rest of the network to answer queries opased on standard results in machine learning and statistics

6.4 In-network processing

detect faulty nodes. (e.g, [62, 50, 14]). There are also a number of proposed tech-
niques for outlier detection [4, 1, 2]. We believe, however, that
7 Related work our approach is one of the first architectures that combines

dRodel-based approximate query answering with query pro-
cessing and optimization and an uncertainty-aware data model
gpd guery language.

There have been other model-based approaches for query
swering that rely on a model-like abstraction [64, 55, 54, 39].
In most cases, the related work assumes a client-server rel
tionship, where the model runs on the server and monitor§ Conclusions

the value of a number of attributes at the clients. These apg, integration of database systems with probabilistic model-
proaches maintain a bound or trajectory over each of the at-

tribute values at the server, using that bound to predict thihg will enable database systems to tolerate loss, detect faulty

value. When the clients notice that their value no longer fit Or erroneous inputs, and identify correlations that can be used

the model, or when the server has sufficient bandwidth or erft—o 'g‘sp:)?veu%lﬁizg pgggr:mn?ggggvglrls egﬁ%{ﬂgr? rsgg; |0ifnn§g
ergy, it will directly observe the attribute values and updateyp q ) P y

the model. Our approach differs from previous research inquisitional settings such as sensornets and Internet monitor-

that it uses multidimensional probabilistic models that track'J where the data_ acquisition costs are typlcally very high;
ven for non-acquisitional applications, being able to deal

the relationship between attributes in addition to the values of : . )
ith noisy and lossy data in a seamless manner, and the abil-

attributes themselves. These relationships, or correlations, al 1o model and reason about data correlations can prove to be
low the model to update its value estimates of many attribute Y P

when a single attribute is observed; models can be built acros%%emgndo.usly useful. There area nu.mber Of. archlteptural and
attributes that are directly observeeld, light readings from algorithmic challenges associated with fully integrating these

. : techniques into database systems and, although we believe we
sensors), as well as global attributesy time of day), and have taken some initial steps towards this end, we look for-
derived attributesd.g, network loss rate). P '

There has b bstantial K imat ward to many years of fruitful cross-disciplinary research. We
ere has been substantial WOrk on approximate QUery progy, ;qiqon this research leading to significant improvements in

cessing in the database community, often using mOde!'.“k?he utility and efficiency of database systems at managing real-
synopse$or query answering much as we rely on probab|I|s-WorIOI data

tic models. For example, the AQUA project [30, 28, 29] pro-
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