
Using Probabilistic Models for Data Management in
Acquisitional Environments

Amol Deshpande∗ Carlos Guestrin∗ Samuel R. Madden
University of Maryland CMU MIT

amol@cs.umd.edu guestrin@cs.cmu.edu madden@csail.mit.edu

There exists a black kingdom which the eyes of man avoid
because its landscape fails signally to flatter them. This darkness,
which he imagines he can dispense with in describing the light, is
error with its unknown characteristics... Error is certainty’s con-
stant companion. Error is the corollary of evidence. And any-
thing said about truth may equally well be said about error: the
delusion will be no greater.

(Preface
to a Modern Mythology, Louis Aragon, French Poet, 1926.)

Abstract

Traditional database systems, particularly those focused on
capturing and managing data from the real world, are poorly
equipped to deal with the noise, loss, and uncertainty in data.
We discuss a suite of techniques based on probabilistic mod-
els that are designed to allow database to tolerate noise and
loss. These techniques are based on exploiting correlations
to predict missing values and identify outliers. Interestingly,
correlations also provide a way to give approximate answers
to users at a significantly lower cost and enable a range of new
types of queries over the correlation structure itself. We illus-
trate a host of applications for our new techniques and queries,
ranging from sensor networks to network monitoring to data
stream management. We also present a unified architecture
for integrating such models into database systems, focusing in
particular onacquisitional systemswhere the cost of capturing
data (e.g., from sensors) is itself a significant part of the query
processing cost.

1 Introduction
The vision of ubiquitous computing promises to spread infor-
mation technology throughout our lives. Though this vision
can be compelling, it also threatens to overwhelm us with a
flood of information, much of which is spurious, irrelevant,
or misleading. Thus, the challenge of realizing this vision is
separating the relevant, timely, and useful information out of
this flood of data. The data management community has made
significant progress towards achieving this goal – by provid-
ing tools that load and clean the data, languages and systems
that can query the data (e.g.,[52, 36, 10, 38]), and algorithms
that mine the data for patterns and relationships that are of
interest [33].

These efforts have largely been focused on mitigating data
complexity once it has been captured and stored inside of a tra-
ditional computing infrastructure. In contrast, we are focusing
on techniques designed to take an active role in managing this
wealth of data by managing when, where, and with what fre-
quency data is acquired from distributed information systems.

∗Work done while the authors were visiting Intel Research Berkeley.

There are many modern systems where the capability of local
nodes to generate data far outstrips the resources available to
transmit or store that data. Nodes in a sensor network, for ex-
ample, typically have processors that run at several megahertz,
with data collection hardware capable of collecting many kilo-
samples per second, but radios that only transmit kilobytes per
second aggregate across all of the nodes in the network. Worse
yet, these nodes are battery powered, and, when sampling at
maximum rates, only have sufficient energy to last for a few
days [46]. Similarly, routers on the Internet can produce huge
amounts of network monitoring traffic, so much so that the
links which that traffic is transmitted across can be easily satu-
rated. Administrators of large networks typically apply simple
techniques (like random sampling) to choose which statistics
to collect [40]. Streaming database systems have much the
same problem, where the need to shed load [10] and drop or
aggregate historical data [52] has been noted.

In addition to the challenges presented by limited re-
sources, data from real world environments is often noisy,
lossy, and hard to interpret. This noise and uncertainty can
be misleading, particularly when the user is summarizing and
aggregating data using a high-level language like SQL. For
example, the California Department of Transportation main-
tains a database of current road speeds from about 10,000
traffic sensors on California highways [9]. On a recent visit
to their website, 60% of sensors were missing data. Such loss
could cause users’ queries to pick congested routes if sensors
on those routes happen to be offline. If the query system could
insteadinfer that missing speeds along certain routes are likely
to be slow based on past behavior or speeds from online sen-
sors, query results would be much more likely to reflect reality.

Besides failures, real-world networks often produce data
that is simply wrong. For example, in a sensor network de-
ployment on Great Duck Island (off the coast of Maine) [63,
48], researchers noted that about 40% of the sensors produced
erratic temperature and humidity readings at some point;
though such readings sometimes precipitated node failure, in
other cases nodes otherwise continued to function normally.
If the data acquisition system could detect and filter such out-
liers, it could inform a user of the failure and conserve band-
width being used to transmit bad readings.

We address all of these problems by building amodelof the
world as data is collected from it. This model allows us to cap-
ture the correlations and statistical relationships between at-
tributes collected by devices. We focus onprobabilisticmod-
els, where the value of each attribute (e.g., temperature, light)
is a probability distribution that reflects the most likely value
of that attribute, possibly depending on the values of other at-
tributes (theirdependents), such as the time of day or behavior



of another node in the network. Such dependencies, orcor-
relations, can be exploited to efficiently answer queries and
enable new query types that explore the relationships between
attributes. Models are built by periodicallyobservingvalues
of one or more attributes (e.g., by acquiring a reading from a
sensor) and using those observations to adjust the probability
distributions of the observed attributes and their dependees.
Models offer three distinct benefits:

1. They make queryingmore efficient. By exploiting cor-
relations between attributes, it is often possible to use ob-
servations of a small number of attributes to provide ap-
proximations of the values of a large number of attributes.
For example, if several temperature sensors in a building
read approximately the same temperature day after day, a
good (though perhaps not 100% accurate) guess after ob-
serving one sensor would be that all of the other sensors
have about the same value.

2. They allow the database system to provideprobabilis-
tic guarantees on the correctness of answers.Unlike
existing database systems, which provide the illusion of
precise answers, even when data is missing or nodes are
faulty, probabilistic models provide probabilistic guaran-
tees on answers, telling the user the probability that a par-
ticular attribute value differs by more than someε from
the reported value based on past observations or known
values of other, correlated attributes.

3. They allow the database system to answernew types of
queries. For example, a model can detect certain very
unlikely values (again, by observing past correlations
with other sensors) and flag them as potentialoutliers.
Similarly, a model can reveal relationships between de-
vices that indicate, for example, that a particular sensor
is redundant or that a pair of network links are in no way
independent of each other. Finally, a model can often
predictthe value of a particular attribute as some point of
time in the past or future.

In this paper, we briefly summarize one model, called
BBQ [22] which we have studied in detail to provide efficient
query answers in sensor networks. We then show how our
ideas can be generalized to provide the other advantages de-
scribed above (e.g., various kinds of probabilistic guarantees
and support for new types of queries) in a variety of domains
and applications beyond sensor networks. We argue that any
resource limited environment can benefit from our techniques.

We also show how to adapt a range of techniques, based on
ideas from the machine learning and data mining communi-
ties, that allow us to improve the predictive power of models,
represent correlations more compactly, and select and train
models that are most appropriate for the data being modeled.
Though such techniques sometimes are directly transferable
from these other domains, they often require significant re-
tooling to deal with limited resources, data acquisition issues,
and to enable integration into a SQL-based database system.

2 Background
In this section, we summarize the basics of probabilistic mod-
els and show how they can be used to answer queries. We also
summarize our previous work on the BBQ system, which is
an example of a probabilistic model tuned to efficiently col-

lect data from a sensor network.

2.1 Probabilistic models

We denote a model as aprobability density function(pdf),
p(X1, X2, . . . , Xn), assigning a probability for each possi-
ble assignment to the attributesX1, . . . , Xn, where eachXi

is an attribute at a particular sensor (e.g., temperature on sen-
sor number 5, bandwidth on link A-B). This model can also
incorporatehidden variables(i.e., variables that are not di-
rectly observable) that indicate, for example, whether a sensor
is giving faulty values or a node is subject to a denial of ser-
vice attack. Such models can be learned from historical data
using standard algorithms (e.g., [50]).

Answering queries probabilistically based on a pdf is con-
ceptually straightforward. Suppose, for example, that a query
asks for an approximation to the value of a set of attributes
to within ±ε of the true value of each attribute, with confi-
dence (i.e., probability of being correct) at least1 − δ. Using
standard probability theory, we can use this pdf to compute
the expected value,µi, of each attribute in the query. These
will be our reported values. We can then use the pdf again
to compute the probability thatXi is within ε from the mean,
P (Xi ∈ [µi − ε, µi + ε]). If all of these probabilities meet
or exceed user specified confidence threshold, then the re-
quested readings can be directly reported as the meansµi. If
the model’s confidence is too low, then we require additional
readings before answering the query.

Choosing which readings to observe at this point is an opti-
mization problem: the goal is to pick the best set of attributes
to observe, minimizing the cost of observation required to
bring the model’s confidence up to the user specified threshold
for all of the query predicates.

We can use the same technique to compute the expected
sum or average of several attributes (e.g., temperature onk
different sensors) by exploiting linearity of expectation, which
saysE(A1 + . . . + Ak) = E(A1) + . . . + E(Ak) and using
the standard expression for the variance(σ) of a sum to com-
pute ourε, δ bound,i.e., σ(A1 + . . . + Ak) =

∑k
i=1 σ(Ai) +∑k

i=1

∑k
j=1 cov(Ai, Aj). We can also compute a confidence

that a particular boolean predicate (e.g., temp> 25) is true by
integrating over area of the pdf representing the region where
the predicate is satisfied.

2.2 Example: Gaussians

In this section, we describe the time-varying multivariate
Gaussians as a type of model. This is the basic model used
in BBQ [21], and we summarize it here to provide a con-
crete example of one kind of model. A multivariate Gaussian
(hereafter, just Gaussian) is the natural extension of the famil-
iar unidimensional normal probability density function (pdf),
known as the “bell curve”. Just as with its 1-dimensional
counterpart, a Gaussian pdf overd attributes,X1, . . . , Xd can
be expressed as a function of two parameters: a length-d vec-
tor of means,µ, and ad × d matrix of covariances,Σ. Fig-
ure 1(A) shows a three-dimensional rendering of a Gaussian
over two attributes,X1 andX2; the z axis represents thejoint
densitythatX2 = x andX1 = y. Figure 1(B) shows a con-
tour plot representation of the same Gaussian, where each cir-
cle represents a probability density contour (corresponding to
the height of the plot in (A)).



5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

X2

X 1

Gaussian PDF over X1,X2 where Σ(X1,X2) is Highly Positive

µ=20,20 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
Gaussian PDF over X1, X2 after Some Time

X2

X 1

µ=25,25 

5 10 15 20 25 30 350

0.02

0.04

0.06

0.08

0.1

0.12

0.14
PDF over X2 After Conditioning on X1

Pr
ob

ab
ilit

y(
X 2 =

 x
)

X2

µ=19 

0
10

20
30

40

0
10

20
30

40
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14

X1

2D Gaussian PDF With High Covariance (!)

X2

0.02

0.04

0.06

0.08

0.1

0.12

(C)

(A)

(B)

(D)

Figure 1:Example of Gaussians: (a) 3D plot of a 2D Gaussian with
high covariance; (b) the same Gaussian viewed as a contour plot;
(c) the resulting Gaussian overX2 after a particular value ofX1

has been observed; finally, (d) shows how, as uncertainty aboutX1

increases from the time we last observed it, we again have a 2D Gaus-
sian with a lower variance and shifted mean.

Intuitively, µ is the point at the center of this probability
distribution, andΣ represents the spread of the distribution.
Theith element along the diagonal ofΣ is simply the variance
of Xi. Each off-diagonal elementΣ[i, j], i 6= j represents
the covariance between attributesXi andXj . Covariance is
a measure of correlation between a pair of attributes. A high
absolute covariance means that the attributes are strongly cor-
related: knowledge of one closely constrains the value of the
other. The Gaussians shown in Figure 1(A) and (B) have a
high covariance betweenX1 andX2. Notice that the contours
are elliptical such that knowledge of one variable constrains
the value of the other to a narrow probability band.

We can use historical data to construct the initial repre-
sentation of this pdfp. This historical data is typically col-
lected as a part of a short observation phase using data ex-
traction tools (in the case of our sensornet deployments, we
have typically used a simple selection query in TinyDB [47]).
Once our initialp is constructed, we can answer queries using
the model, updating it as new observations are obtained from
the sensor network, and as time passes. We explain the de-
tails of how updates are done in Section 2.2.2, but illustrate it
graphically with our 2-dimensional Gaussian in Figures 1(B)
- 1(D). Suppose that we have an initial Gaussian shown in
Figure 1(B) and we choose to observe the variableX1; given
the resulting single value ofX1 = x, the points along the
line {(x, X2) | ∀X2 ∈ [−∞,∞]} conveniently form an (un-
normalized) one-dimensional Gaussian. After re-normalizing
these points (to make the area under the curve equal 1.0), we
can derive a new pdf representingp(X2 | X1 = x), which
is shown in 1(C). Note that the mean ofX2 given the value
of X1 is not the same as the prior mean ofX2 in 1(B). Then,
after some time has passed, our belief aboutX1’s value will
be “spread out”, and we will again have a Gaussian over two
attributes, although the mean and variance may have shifted
from their initial values, as in Figure 1(D).

Of course, this is but one example of many different types
of models that could be used. Our basic approach can be gen-

eralized to various different models that may be more suitable
in different environments and for different classes of queries.
We will revisit this issue in Section 5. In the next two sec-
tions we look briefly at some of the technical details involved
in creating and maintaining the Gaussian model used in BBQ.

2.2.1 Learning the model

Typically, probabilistic models are learned from some set of
training data. In BBQ, this training data consisted of read-
ings from all of the monitored attributes over some period of
time. For example, with a Gaussian model, initial means and
covariances can be computed from training data using stan-
dard statistical algorithms. Thus, for the specific model used
in BBQ, we need to capture training data for some period of
time before we can begin predicting values or exploiting cor-
relations to avoid unneeded acquisitions. We are exploring
techniques for interleaving model construction and query pro-
cessing when possible, as described in Section 6 below.

2.2.2 Updating the model

Thus far, the model we have described representsspatialcor-
relation in a network deployment. However, many real-world
systems include attributes that evolve over time. For exam-
ple, in a sensor network deployment in our lab, we noted
that the temperatures have both temporal and spatial corre-
lations [19]. Thus, the temperature values observed earlier in
time should help us estimate the temperature later in time. A
dynamic probabilistic modelcan represent such temporal cor-
relations by describing the evolution of this system over time,
telling us how to computep(Xt+1

1 , . . . , Xt+1
n | o1...t) from

p(Xt
1, . . . , X

t
n | o1...t), whereo1...t is the set of observations

made over the network up to timet.
One common dynamic model is aMarkovianmodel, where

given the value ofall attributes at timet, the value of the
attributes at timet + 1 are independent of those for any
time earlier thant. This assumption leads to a simple
model for a dynamic system where the dynamics are sum-
marized by a conditional density called thetransition model,
p(Xt+1

1 , . . . , Xt+1
n | Xt

1, . . . , X
t
n). Using a transition model,

we can computep(Xt+1
1 , . . . , Xt+1

n | o1...t) using the stan-
dard probabilistic technique ofmarginalizationby integrating
the transition model over the attribute values at timet.

This approach assumes the transition model is the same for
all times t. Often, this is not the case – for example, in an
outdoor environment, in the mornings temperatures tend to in-
crease, while at night they tend to decrease. This suggests that
the transition model should be different at different times of
the day. One way to address this problem is by learning a dif-
ferent transition modelpi(Xt+1 | Xt) for each houri of the
day. At a particular timet, we simply use the transition model
mod(t, 24). This idea can, of course, be generalized to other
cyclic variations.

Once we have obtainedp(Xt+1
1 , . . . , Xt+1

n | o1...t), the
prior pdf for timet+1, we can again incorporate the measure-
mentsot+1 made at timet + 1 obtainingp(Xt+1

1 , . . . , Xt+1
n |

o1...t+1), the posterior distribution at timet+1 given all mea-
surements made up to timet+1. This process is then repeated
for time t + 2, and so on. The pdf for the initial timet = 0,
p(X0

1 , . . . , X0
n), is initialized with the prior distribution for at-

tributesX1, . . . , Xn.



2.3 Architecture

Given this basic structure for models, we show how they fit
into a probabilistic query answering architecture. Parts of this
architecture were laid out in our work on BBQ [22], though
we have extended the architecture here to support several new
kinds of queries as described in Section 4 below. One of our
specific goals is for our architecture to be model-agnostic,i.e.,
as long as a new model conforms to a basic interface, it re-
quires no changes to the query processor and can reuse the
code that interfaces with and acquires particular tuples.

Figure 2 illustrates our basic architecture through an exam-
ple of a probabilistic model running over a sensor network.
For other environments that involve data acquisition (as we
note in Section 3 below), this basic architecture applies un-
changed, with the main difference being the data acquisition
mechanism. In non-acquisitional environments, models can
still play an important role, as we note in Section 3.

Users submit queries to the database as in a traditional
database, though we allow some unusual types of queries (see
Section 4). One such class of queries is standard SQL queries
augmented with error tolerances and target confidence bounds
that specify how much uncertainty the user is willing to toler-
ate; such bounds will be intuitive to many scientific and tech-
nical users, as they are the same as the confidence bounds used
for reporting results in most scientific fields (c.f., the graph
shown in the upper right of Figure 2), though we are also ex-
ploring techniques, such as visualization, to allow the layper-
son to interpret query results.

In this example, the user is interested in estimates of the
value of sensor readings for nodes numbered 1 through 8,
within .1 degrees C of the actual temperature reading with
95% confidence. After consulting the model, the system re-
alizes that the model is not sufficiently accurate to answer the
query with the specified confidence, and it decides that the
most efficient way to achieve that confidence level is to read
battery voltage from sensors 1 and 2 and temperature from
sensor 4. Based on knowledge of the sensor network topology,
it generates anobservation planthat specifies how to acquire
those samples (e.g., which route to use to visit the relevant
sensors), and sends the plan into the network, where the ap-
propriate readings are collected. These readings are used to
update the model, which can then be used to generate query
answers with specified confidence intervals.

Notice that the model in this example chooses to observe
the voltage at some nodes despite the fact that the user’s query
was over temperature. This happens for two reasons:

1. Correlations in value: Battery voltage and temperature
often vary together, since batteries are somewhat higher
voltage at warmer temperatures. For many types of bat-
teries (such at the lithium-ion cells used in many mote
deployments), this effect is quite pronounced (e.g., we
observe about 1% variation per degree on motes). Local
variations in voltage are much more likely to be due to
temperature fluctuations than decreased capacity, since if
battery voltage drops at all as a battery’s storage dwin-
dles, it will vary over a much longer time scale.

2. Cost differential: Depending on the specific type of
temperature sensor used, it may be much cheaper to sam-
ple the voltage than to read the temperature. For ex-

Probabilistic Model and Planner

Observation Plan

Probabilistic Queries Query Results

Query Processor

"SELECT nodeId,  
temp ± .1°C, conf(.95)       
WHERE nodeID in {1..8}"

"1, 22.3 97%
 2, 25.6 99%
 3, 24.4 95%
 4, 22.1 100%
 ..."

"{[voltage,1], 
   [voltage,2],
   [temp,4]}"

Data
"1, voltage = 2.73
 2, voltage = 2.65
 4, temp = 22.1"

1

2

3

4

5 6

7

8

Sensor Network

20
22
24
26
28
30

1 2 3 4

Sensor ID

C
el

si
us

User

Predicate 
Checker

Local Model
Data Mgmt
Acquistion

Figure 2: Our architecture for model-based querying, shown as an
example running on top of a sensor network.

ample, on sensor boards from Crossbow Corporation for
Berkeley Motes [15], the temperature sensor requires or-
ders of magnitude more energy to sample than simply
reading battery voltage. A primary goal of our work is
to use models to help decide which sensors are signifi-
cant and worth acquiring, given differential data acquisi-
tional costs and the user’s data demands (as specified in
queries).

Thus, one of the key properties of many probabilistic models is
that they can capture correlations between different attributes.

In general, the software that runs on each of the nodes in the
network (shown in the small box on the bottom-left of Figure
2) includes some code to facilitate model-based query execu-
tion. Thepredicate checkeris in charge of applying proba-
bilistic predicates to determine if a particular query answer is
worth transmitting – this is needed to help execute continuous
queries that are looking for outliers or other exceptional con-
ditions. It executes against a local image of the model which
captures the state and behavior of the local node and its re-
lationship to other nodes. Thedata management layeris in
charge of managing typed tuples of data, which it builds up by
calling down into theacquisition layer. Note that, in the ex-
ample described here, the predicate checker and local model
are not needed, because (in this case) the model is stored cen-
trally. In general, centralized models make query planning
easier since they have access to state in a single location, but
are more expensive (in terms of communication or energy),
because they must collect that state to a single location rather
storing it locally at the nodes.

There are thus four major steps to query processing in our
architecture:

1. Using the model, the query optimizer generates an ob-
servation plan which will allow it to answer the query to
within the specified bounds at a minimal cost.

2. The plan is executed by the network, collecting data from
relevant nodes (and possibly filtering out some results by
consulting an in-network version of the model).

3. The model is updated with results collected from the net-
work.

4. Using basic probability computations (Section 2.1), the
query answer and confidence bounds are computed.



We note that he user in Figure 2 could have requested 100%
confidence and no error tolerance, in which case the model
would have required us to interrogate every sensor. Con-
versely, the user could have requested very wide confidence
bounds, in which case the model may have been able to an-
swer the query without acquiring any additional data from the
network.

Given this basic introduction to our architecture, we now
turn our attention to some of the ways in which our techniques
can be applied.

3 Applications
Systems that exploit statistical modeling techniques and opti-
mize the utilization of a network of resource constrained de-
vices, such as BBQ, could have significant impact in a num-
ber of areas, as outlined by some case studies described in this
section. Although our architecture is targeted primarily at ac-
quisitional environments, some of the systems we discuss do
not fall into this category (e.g., database cost estimation) and
can still benefit from our core probabilistic modeling technol-
ogy.

3.1 Sensor applications

We begin with several sensor-network applications:
Building control: Sensor networks have a number of appli-
cations in control and automation in buildings. For example,
rather than monitoring temperatures at just a few points in a
building, as is done in most HVAC systems today, the sen-
sor network can monitor temperatures throughout the build-
ing, and regulate more effectively the power generation and
output of heating and air conditioning systems [44]. Battery
powered sensors are desirable because they can be deployed
much more cheaply in existing building infrastructures. How-
ever, for batteries to be cost effective, they must last a fairly
long time. Our modeling techniques make it possible to cap-
ture information that could be used in such a building control
environment (with bounds on the error and probability of ex-
ceeding that error) while visiting a small number of nodes,
thus, significantly extending the lifetime of the network.
Sensor failure detection: In long-term environmental sens-
ing deployments, sensors are known to be failure prone [63];
in many cases these failures are “Byzantine” – that is, nodes
do not stop, but rather simply produce erroneous output.
Such failures may show up as outlier values, or, more gen-
erally, generate sensor readings that follow unexpected pat-
terns. Thus our outlier detection queries should be able to
detect them. Here, probabilistic models and statistical tech-
niques provide the basis for detecting such unexpected pat-
terns. Using fault injection techniques, and by studying fail-
ures from previous deployments, we can build alerting tools
that can detect failed and misbehaving sensors.
Highway traffic monitoring and optimization: As we noted
in the introduction, traffic sensor data (as currently made avail-
able by the California Department of Transportation [9]), con-
sists of data from hundreds or thousands of sensors (typi-
cally, these are metal loops embedded in the freeway that
use inductance to record as cars pass over them). Based
on our studies over several days of the data from these web
sites, it appears as though such sensors are often offline –
Figure 3 shows a screenshot from a CalTrans Java applet

Sa
n 

Fr
an

ci
sc

o 
Ba

y

East Bay

San
Fran

Marin

Figure 3:Screenshot from the California Department of Transporta-
tion road sensor website in the Bay Area. Green dots represent roads
where the traffic is travelling faster than 45 MPH; yellow repre-
sents traffic moving 15-45 MPH, and red represents traffic moving
at speeds less than 15 MPH. Gray circles with black dots (added for
clarity) represent offline sensors.

(http://www.dot.ca.gov/traffic/ ) looking at the
San Francisco area during rush hour on 8/4/04. In this case,
the larger circles to the left and right of the roadways represent
the speeds on the two sides of the freeway; green and yellow
circles (the lightest in color, when viewed in grayscale) repre-
sent speeds above 15 MPH, whereas red (dark) circles repre-
sent slower speeds. Gray (intermediate darkness) circles with
black dots in the middle represent offline sensors. Notice that
a few sensors at the west edge of the Bay Bridge indicate traf-
fic there is slow, but that many sensors around it are offline. It
is not clear if travellers should avoid the Bridge, or if this is
a localized anomaly that will not cause long delays. Feeding
such data to a route planning algorithm is likely to cause it to
do very strange things if it tries to apply linear interpolation or
other simple techniques to guess traffic speeds. In contrast, a
probabilistic model can use data from times when the sensors
were online, combined with the data from a few of the nodes,
to infer the missing speeds.

Structural and factory health monitoring: A popular appli-
cation for sensor networks ispreventative maintenance[37],
where structures and industrial equipment are monitored for
early signs of failure. A widely used technique for failure
detection involves measuring changes in the phase between
vibration signals from groups of sensors – the intuition be-
ing that if two parts of a piece of equipment are solidly con-
nected, they will vibrate in-phase, but if they suddenly become
out-of-phase with each other, that is a sign that something is
wrong. Probabilistic models provide a convenient way to de-
termine the components that are expected to vibrate in-phase
with each other, and outlier detection techniques like those
used for sensor failure detection can identify low-probability
changes in the phase structure, indicating the possibility of
impending failure.

Intrusion detection and tampering: As a part of an involve-
ment in MIT’s new Center for Information Security and Pri-



vacy (CISP) [49], we are investigating techniques for intrusion
detection in wireless and sensor networks. In sensor networks,
there are a range of physical attacks that involve tampering
with devices or sensors. Examples include intruders seeking
to hide information about their presence or trying to cause a
control or regulatory system to misbehave (e.g., people often
’hack’ computers in their cars to increase performance, possi-
bly decreasing safety and increasing emissions). Outlier and
influence queries have potential application in detecting this
sort of tampering.

3.2 Non-sensor applications

There are also a wide range of non-sensor applications that
can benefit from our probabilistic model-based approach.
Network monitoring: Network monitoring, even in wired
networks, has the potential to consume a significant propor-
tion of available bandwidth. For example, on a typical edge
gateway in a large university, per-flow statistics are collected
to identify users and applications that are potential security
concerns or who are over-utilizing the network. Such statis-
tics constitutes tens of MB/sec of data, and, even on a well-
provisioned inter-university network, collecting a complete set
of such statistics exhausts the CPU and bandwidth capabil-
ities of edge routers [40]. Current practice is to randomly
sample a subset of flows and store just the sample. Simi-
larly, in wireless networks, the collection of time-varying link
quality and congestion information can impose a significant
overhead, especially in dynamic networks where such infor-
mation may change rapidly, requiring frequent link-sampling.
We can use probabilistic modeling techniques to estimate and
track loss rates, congestion information and security concerns
(e.g., types of flows that are likely to use unusual amounts of
bandwidth or are otherwise outliers), exploiting correlations to
avoid acquiring data that can be inferred from a well-chosen
subset of available readings.
Database summaries:Capturing the joint data distribution
of multi-dimensional data sets through compact and accurate
synopsesis a fundamental problem arising in a variety of prac-
tical scenarios, includingquery optimization, query profiling,
andapproximate query answering. Cost-based query optimiz-
ers employ such synopses to obtain accurate estimates of in-
termediate result sizes that are, in turn, needed to evaluate the
quality of different execution plans. Similarly, query profil-
ers and approximate query processors require compact data
synopses in order to provide users with fast, useful feedback
on their original query [11, 59]. Such query feedback (typ-
ically, in the form of anapproximate answer) allows OLAP
and data-mining users to identify the truly interesting regions
of a data set and, thus, focus their explorations quickly and ef-
fectively, without consuming inordinate amounts of valuable
system resources. Further, users can make informed decisions
on whether they would like to invest more time and resources
to fully executing their queries.

The idea of using probabilistic modeling techniques to
build synopses has already been explored [18, 27]. As this
previous work shows, using probabilistic models to capture
and exploit the correlations in the data can lead to significantly
more compact summaries. The techniques we have developed
can be directly applied in this context as well; in particular we
are interested in answering more complex queries as well as

in providing probabilistic guarantees to the user.
Load shedding in streams:Load-shedding is cited as a re-
quirement in many stream-based query processors [52, 10].
The Aurora [10] project proposessemantic load shedding,
where input tuples that correspond to particular output values
are considered more important than other tuples (and are thus
not shed). The authors of Aurora propose a scheme where the
query plan is “reversed” to determine such input-output map-
pings, but for general query plans, such an approach is infeasi-
ble, since operations like joins and aggregates are not readily
invertible. As a more tractable alternative, we can use prob-
abilistic models to determine the relationship between inputs
and outputs, keeping input tuples that have a high probability
of mapping to valued outputs. These probabilistic relation-
ships may include correlations between different fields in the
input tuples, so that, for example, the model may determine
that intermediate join tuples have a low probability of produc-
ing a high-value output, even though the base tuples of the join
both had a high value prior to the join.
Monitoring distributed streams: Recently there has also
been an increasing interest in distributed data streams,i.e.,
data streams that originate and are processed in a distributed
fashion [23, 13]. Though similar to sensor networks in
many aspects, the optimization goal in such systems is net-
work latency, not the battery life of the sensors. The IrisNet
project [23] proposes use of caching to reduce the latencies
incurred in query answering. We believe a model-based ap-
proach can lead to both better answer quality, and a reduction
in latencies, especially in applications such as the motivating
parking space finderapplication of IrisNet.

4 New queries
These applications require a range of new queries that non-
probabilistic database systems are ill-equipped to answer. In
this section, we summarize the range of new queries that we
are working to support.
Probabilistic, approximate queries: The most basic class of
queries that we anticipate users to ask are probabilistic and
approximate variations of traditional SQL queries. Examples
of such queries include queries asking fortemperatureat a
certain location in a building, oraverage speedalong a seg-
ment of a highway. We can support such queries by using
additional predicates in SQL expressions that specify the con-
fidence that the user wants in the answer, or the error she is
willing to tolerate. This class of queries covers traditionalex-
act queries which can be asked by setting the confidence re-
quired to 100%.

Our initial effort in BBQ provided support for this type of
query; Figure 4 shows one advantage of approximate queries:
improved performance. In this case, we ran three range
queries over temperature readings from a 11 node sensor de-
ployment in the Berkeley Botanical Garden. We trained our
model for 20 days and ran test queries over a 10 day period.
We used pre-collected data so we could verify the accuracy
of our approximate query answers during this test period. If
we had asked an exact query, we would have been required to
observe the value of every sensor at each point in time; using
our Gaussian-based probabilistic model with queries specify-
ing 95% confidence, we were required to observe the values
of only a small fraction of the sensors. The truth values of the



predicates on the unobserved sensors could be accurately pre-
dicted by exploiting cross-sensor correlations (in all cases, we
had less than the 5% allowed errors when we compared the
predicted predicate values to the actual values from the test
data). Notice that different predicates require observation of
different numbers of sensors at different times of day – this is
because of the natural temperature distributions in the garden
that our model is able to exploit. For example, during the day,
the temperatures are typically significantly higher than the top
end of the range specified in first predicate (16-17 degrees).
Because of this, during the day, very few observations need to
be made to ascertain that the predicate is false with sufficient
confidence.

0

20

40

60

80

100

6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00

Time of Day

P
er

ce
nt

ag
e 

of
 O

bs
er

ve
d 

N
od

es

Range [16-17]
Range [19-20]
Range [21-22]

Figure 4: Percentage of observed sensors versus time of day for a
36 hour period over 11 sensors deployed in the Berkeley Botanical
Garden for three different range predicate queries. In this case, we
setδ = 5% (95% confidence).

Outlier queries: Outliers are essentially events of low prob-
ability, and use of probabilistic models provides an excellent
mechanism to detect outliers. To detect outliers, the user could
ask the system to report whenever any attribute value occurs
that has a low user-specified probability of occurrence, or that
differs from its expected value by more than some threshold.
As an example, a user might register a continuous query that
reports any time the bandwidth on their wireless network is
more than three times the expected value for the current time
of day. Note that, outlier detection will typically require con-
tinuous observation of the underlying attributes at the motes,
and the main advantage of using models in this case would be
to save communication cost (though knowledge of how often,
and under what circumstances outliers are expected to occur
may be used to reduce the observation costs as well).
Prediction queries: These queries estimate the value of an
attribute or predicate either (1) at a location where there are
currently no available devices, or (2) at some time in near
future, with the best precision (and report that precision and
confidence in the estimate). For example, a user might ask:
“What will the temperature in Room 938 be in 10 minutes?”
Similarly, users might post “what-if” queries, to discover how
a change in one attribute might affect other attributes – for
example, in a system monitoring application, a user might ask
how increasing bandwidth on a given link would increase CPU
utilization on a given processor.
Queries over hidden variables: In many scenarios, there
may be interesting variables that cannot be directly observed,

but that can be reasoned about. For example, in a sensor net-
work that has sensors for monitoringtemperature, pressure
andlight, but not for monitoringrain, we can never “observe”
rain directly, but it may be possible to infer whether it is rain-
ing or not based on the values of the observable variables.
There has been much work on hypothesizing about hidden
variables (in the above example, we knew beforehand about
existence of an unobservable variable; there may be cases
where we have first infer that a hidden variable exists), and
learning structures containing them [25]. We expect to be able
to leverage these existing techniques in our work.
Influence queries:Use of probabilistic models also opens up
avenues for asking sophisticated analysis queries. One such
class of queries areinfluence queries, where the user might
want to know which attributes are most closely correlated with
the value of a particular attribute. Such queries can be used to
help infer causality or determine when sensors in an area are
redundant. For example, a user might ask the question: “What
percentage of the traffic on linki is predicted by the traffic on
links j andk over all time?”

5 Challenges
Given these applications and queries, we now discuss some of
the challenges they present, followed by a set of techniques
we are exploring to address these challenges.
Model selection:Choosing the best model for the given query
workload and environment is a key issue. The choice of model
affects many aspects of our approach:

• Accuracy of the answers:Recall that we provide prob-
abilistic answers to the user, and the confidence in the
answers provided relies on the assumption that the un-
derlying data follows the model with sufficient accuracy.
If this is not the case, the answers provided by our models
could be erroneous.

• Ability to answer certain types of queries:Some mod-
els are more naturally suited to answer certain types
of queries. For example, outlier detection requires the
system to continuously sample sensors and check them
against the model to see if they have a low probability of
occurring. To do this efficiently, we may require a model
that is distributed across the nodes in a system.

• Algorithmic aspects of querying:The techniques to
query the model efficiently are highly dependent on the
choice of the model. The space and time requirements of
different models can vary by orders of magnitude.

Selecting a suitable model for the data is one of the critical
challenges in the deployment of model-based systems.
Transparency in model selection and usage:Although dif-
ferent models may be better suited for different environments
and for different classes of queries, developing a completely
new system for each different model may be a waste of time
and development effort. Ideally, using a new model should
involve little to no effort on the part of user. Given a large
variety of models that may be applicable in various different
scenarios, this may turn out to be a tremendous challenge.
Data acquisition: Irrespective of the model selected, when
and how to acquire data is one of the key issues that needs
to be addressed. In most of the scenarios that we envision
a model-based system being deployed, the cost of acquiring
and/or transferring data is the dominant cost. For example, in



sensor networks, both the cost of sampling data, and the cost
of communicating it to the basestation are high – for exam-
ple, in a recent analytical study, we estimated that 98% of en-
ergy in a typical sensor network data collection scenario was
consumed sampling sensors or communicating. In distributed
system where the data is being generated all over the world,
minimizing the latency in answering the query could be the
optimization goal. There are two aspects to this problem:

• Whento acquire data: This is partly dependent on the
model and the user query. To maintain the required con-
fidence in the answers it provides, the model could ask
for more samples of the underlying data. In many cases,
we expect that the same confidence may be achieved in
many different ways,i.e., by sampling different sets of
attributes of the data. Because of this, the question of
whento acquire data will typically be tightly integrated
with the question ofhow it is acquired.

• How to acquire data: Most of the environments we have
discussed so far exhibit highly non-uniform cost struc-
tures. For example, in sensor networks, the costs of sam-
pling different attributes can be wildly different. Also,
the multi-hop nature of communication in sensor net-
works means that sampling sensors closer to the base sta-
tion is cheaper than sampling far away sensors.

Issues surrounding when and how data is collected are
amongst of the most interesting algorithmic challenges in the
development and deployment of model-based systems.
Training and retraining: In general, a probabilistic model
is only as good at prediction as the data used to train it. For
models to perform accurate predictions they must be trained
in the kind of environment where they will be used. That does
not mean, however, that well-trained models cannot deal with
changing relationships over time; for example, the model we
used in BBQ[21] uses different correlation data depending on
time of day. Extending it to handle seasonal variations, for
example, is a straightforward extension of the techniques we
use for handling variations across hours of the day. Typically
in probabilistic modeling, we pick a class of models, and use
learning techniques to pick the best model in the class. The
problem of selecting the right model class has been widely
studied (e.g., [50]), but can be difficult in some applications.

In Section 6, we outline a more general Bayesian approach
that integrates querying of the data with learning.
Data model and query language:Our initial efforts have fo-
cused on building simple Gaussian models and demonstrating
that they can answer certain classes of queries [21]. However,
we do not have an integrated acquisition-oriented database
system that includes notions of uncertainty or modeling, and
it is not clear how such models can be integrated in a gen-
eral way into the existing relational data model and query
languages. One possible data representation is to attach a
probability distribution to each data point – several propos-
als for probabilistic data models of this type have been made
in the literature [42, 3, 24, 27], and we may be able to adapt
this existing work. None of these approaches, however, fo-
cus on the data acquisition or model-learning issues. Instead,
they concentrate representing user-specified uncertainty in the
database; the approaches do not help us address our principal
challenge of acquiring appropriate data to answer user queries
at the desired confidences.

As an initial step towards supporting uncertainty in our
query language, we currently representε, δ bounds as addi-
tional query predicates in SQL expressions, as in the query
shown in Figure 2 above, but there are a number of outstand-
ing questions about how a system deals with readings with
differing levels of uncertainty. For example, how can read-
ings with different uncertainties from different sub-queries be
composed into a final query result? What should we do if our
models cannot answer queries to a given confidence level? Are
there other representations besides confidence that we should
consider (e.g., absolute or relative deltas)?
Exposing uncertainty to the user: One issue with exposing
uncertainty to the user is that it requires him or her to un-
derstand the basics of probability. Although this may be ac-
ceptable for scientific users who are used to statistical tests of
significance and other confidence metrics, for the lay-person,
such notions will be quite confusing. One possibility is to
convert probabilistic answers to definite answers when result
confidence is above a give threshold, suppressing the uncer-
tainty report. Though at first this appears to be no better than
what traditional uncertainty-unaware database do, it is in fact
substantially better as the user is never exposed to answers that
do not have a high probability of being true. For example, in
the case of the California Freeway sensors given in the intro-
duction, users wouldn’t receive average speeds for segments
where the uncertainty was low, preventing them from inadver-
tently using congested routes.

The other possibility we are exploring is to avoid these con-
cerns through the use of visualization tools. Figure 5 shows a
visualization mockup of uncertainty in readings from a sin-
gle sensor. It shows a stream of temperature readings from a
single sensor; the small circles represent points of time when
readings are actually captured. The contours represent differ-
ent levels of uncertainty in readings. The darkest, narrowest
band corresponds to a band of confidence about the most prob-
able value of the sensor – in this case, there is a 90% chance
the true value of the sensor is in this band. The lighter, outer-
most band captures the range of readings where the true value
lies with 99% probability. This visualization could be built
using a probabilistic model such as our Gaussian model and
provides an intuitive representation of uncertainty.

Figure 6 shows a second visualization of uncertainty in-
formation for a query that collects readings from a set of geo-
graphically distributed sensors (in this case, sensors are shown
on a portion of Nantucket Island). In this case, colors repre-
sent temperature estimates; large solid circles represent the lo-
cations of sensors. White circles are inactive sensors that were
not involved in data collection. Densely colored regions rep-
resent areas where there is high certainty on the reading, with
sparsely colored regions having low certainty. These certain-
ties can be derived, for example, from a probabilistic model
that represents correlations between the active sensors and the
inactive sensors. Such a visualization allows users to quickly
determine where more sensors may be needed, and to under-
stand how well sensors are monitoring an area of interest.

We are planning to build support for both types of uncer-
tainty visualization into our system.
Continuous vs. snapshot queries:We plan to support both
snapshot queries,i.e., one-time queries about the current state
of the system, and continuous queries,i.e., queries which the



Time12:05:30 2:05:30

Te
m
pe
ra
tu
re

99%

90%
95%

Figure 5:Mockup visualization of a display used to visualize uncer-
tainty in a stream of readings coming from a sensor.

X

Y

15°C

25°C

Figure 6: Mockup visualization of uncertainty display of a set of
temperature sensors (circles outlined in black) on Nantucket Island.
Confidence in readings is represented by colored-dot density.

user wants to know the answers of on a periodic basis. De-
pending on the optimization goals, these two classes of queries
pose different optimization challenges. The challenge with
snapshot queries is to balance “push” vs “pull”. Pushing too
much data towards the user can lead to wasted communica-
tion; on the other hand, having the system pull data for every
snapshot query could lead to unreasonable latencies. For a
continuous query, we must figure out which nodes should stay
active, when to do sampling and how to communicate the data
from those nodes to the base station. Though it is possible to
optimize the data acquisition process heavily, dynamic sensor-
net topologies can complicate matters.

6 New techniques
In order to address the wide range of applications and new
queries described in Sections 3 and 4, and to surmount the
challenges in Section 5, it is insufficient to simply adapt ex-
isting methods in data bases, machine learning and distributed
systems; we need new integrated approaches. This section
outlines techniques that can address some of these issues as
well as research directions that we are currently pursuing.

6.1 Representations for probability distributions

Probabilistic models are the centerpiece of our approach. In
Section 2.1, we described very general probability distribu-
tions, p(X1, X2, . . . , Xn). Choosing the appropriate repre-
sentation for such distribution, allowing us to represent com-
plex correlations compactly, to learn the parameters effec-
tively, and to answer queries efficiently is one of the biggest
challenges in this research. Probabilistic graphical models are
a very appropriate choice to address these issues [57].

In a (probabilistic) graphical model, each node is associ-

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE
50

51

52 53

54

46

48

49

47

43

45

44

42 41

3739

38 36

33

3

6

10

11

12

13 14

15
16

17

19

20
21

22

2425
26283032

31

2729

23

18

9

8

7

4

34

1

2

35
40

Figure 7: Structure of graphical model learned for the temperature
variables for a deployment in the Intel Berkeley Lab [56].

ated with a random variable. Edges in the graph represent
“direct correlation”, or, more formally, conditional indepen-
dencies in the probability distribution. Consider, for example,
the sensor deployment shown in Figure 7, where the attributes
are the temperatures in various locations in the Intel Berkeley
Lab. The graphical model in Figure 7 assumes, for instance,
that temperatures in the right side of the lab are independent
of those in the left side, given temperatures in the center (e.g.,
T20 andT47 are independent givenT10, T32, andT33).

The sparsity in graphical models is the key to effi-
cient representation and probabilistic querying [14]. In
discrete settings, for example, a naive representation of
p(X1, X2, . . . , Xn) is exponential in the number of attributes
n, while a graphical model is linear inn and, in the worst case,
exponential in the degree of each node. In addition to reduc-
ing space complexity, reducing the number of parameters can
prevent overfitting when the model is learned from small data
sets. Similarly, answering a query naively is exponential inn,
while in a graphical model the complexity is linear inn and
exponential in the tree-width of the graph.

In our setting, in addition to allowing us to answer queries
efficiently, graphical models are associated with a wide range
of learning algorithms [34]. These algorithms can be used
both for learning a model from data, and to evaluate the cur-
rent model, addressing many of the model selection issues dis-
cussed above.

Additionally, graphical models allow us to efficiently ad-
dress hidden variables, both in terms of answering queries and
of learning about hidden variables [25]. In the example in Fig-
ure 7, each node could be associated with a faulty sensor hid-
den variable [43]. When a node is faulty, the sensed value is,
for example, independent of the true temperature. By exploit-
ing correlations in the temperatures measured by the nodes
and sparsity in the graphical model, we can efficiently answer
outlier queries.

Finally, there is vast graphical models literature for ad-
dressing other types of queries and models. For example,
these models can be extended to allow for efficient representa-
tion and inference in dynamical systems [8, 17], and to answer
causal queries [58].

6.2 Integrating learning and querying

Thus far, we have focused on a two-phase approach: in the
first phase, we learn the probabilistic model, and in the sec-
ond, we use the model to answer queries. This is an artificial
distinction, raising many questions, such as when should we
stop learning and start answering queries. We can address this
issue by applying aBayesian learningapproach [6].



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Beta(1,1)

parameter value

Be
ta

 p
df

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Beta(2,2)

parameter value

Be
ta

 p
df

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Beta(3,2)

parameter value

Be
ta

 p
df

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
Beta(30,20)

parameter value

Be
ta

 p
df

(c) (d)
Figure 8: Bayesian approach for learning the parameter of a coin:
(a) prior distribution, Beta(1,1); posterior distributions over the coin
parameter after observing: (b) 1 head, 1 tail; (b) 2 heads, 1 tail; (b)
29 heads, 19 tails.

In a Bayesian approach, we start with aprior distribution
p(Θ) over the model parametersΘ. After observing some
value for the attributesx, we use Bayes rule to obtain aposte-
rior distribution over the model parametersp(Θ | x):

p(Θ | x) ∝ p(x | Θ)p(Θ). (1)

This process is repeated as new data is observed, updating the
distribution over model parameters.

Consider, for example, the task of learning the parameter
of a biased coin; that is, the coin flips are independently dis-
tributed according to the usual binomial distribution with un-
known parameter. Typically, for efficiency reasons, we choose
a prior distribution that yields a closed form representation of
the posterior in Equation (1); when such closed-form solu-
tions are possible, the priorp(Θ) and the likelihood function
p(x | Θ) are said to beconjugate. In our example, Beta distri-
butions are conjugate to the binomial distribution of the coin.
Figure 8 illustrates the process of Bayesian learning for our
coin example: We start with the Beta(1,1) in Figure 8(a); here,
the distribution over possible coin parameters is almost uni-
form. Figures 8(b)-(d) illustrate the posterior distribution over
the coin parameters after successive observations. As more
coin flips are observed, the distribution becomes more peaked.
Thus, when answering a query about the coin after a few flips,
our answer will be uncertain, but after making a larger num-
ber of observations, the answer will have significantly lower
variance.

These ideas can be integrated with our approach to avoid
the need for a separate learning phase. Consider the Gaus-
sian distributions used in the BBQ system. Initially, we may
be very uncertain about the mean and covariance matrix of
this distribution, which can be represented by a highly uncer-
tain prior (the conjugate prior for the covariance matrix is the
Wishart distribution). Thus, when faced with a query, we will
need to observe the value of many sensors. However, using
Bayesian updating, after we observe these sensor values, in
addition to answering the query at hand, we become more cer-
tain about the mean and covariance matrix of the model. Even-
tually, we will be certain about the model parameters, and the
number of sensors that we will need to observe will automat-

Light < 
100 Lux

Temp > 
20° C

Temp > 
20°C

Light  < 
100 Lux

Traditional Plans 

Light < 
100 Lux

Temp > 
20° C

Temp > 
20°C

Light  < 
100 Lux

Time in 
[6am, 6pm]

T

F

A Conditional Plan

SELECT *  FROM sensors
WHERE light < 100 Lux AND temp > 20° C

Figure 9: A conditional query plan that uses different ordering of
query predicates depending on the time of day.

ically decrease. This integrated approach achieves two goals:
first, the learning phase is completely eliminated; second, us-
ing simple extensions, we can add dynamics to the parameter
values, allowing the model to change over time.

6.3 Long-term query plans

Modeling the correlations between different attributes in the
system and also, the correlations across time, enables the
query planner to consider a much richer class of execution
plans than previously possible.

One such interesting class of execution plans that we have
explored in our previous work [20] areconditional plans.
These plans exploit the correlations present in the data by in-
troducing low-cost predicates in the query execution plan that
are used to change the ordering of the more expensive predi-
cates in the query plan.

As an example, consider a query containing two predicates
temp > 20o C, and light < 100 Lux over a sensor
network. Let theapriori selectivities of these two predicates
be 1

2 and 1
2 respectively, and let the costs of acquiring the at-

tributes be equal to 1 unit each. In that case, either of the two
plans a traditional query processor might choose has expected
cost equal to 1.5 units (Figure 9). However, we might observe
that the selectivities of these two predicates vary considerably
depending on whether the query is being evaluated during the
day or at night. For instance, in Berkeley, during Summer, the
predicate ontemp is very likely to be false during the night,
whereas the predicate onlight is very likely to be false dur-
ing the day. This observation can be utilized to construct a
conditionalplan as shown in the figure that checks the time of
the day first, and evaluates the two query predicates in differ-
ent order depending on the time. Assuming that the selectivity
of thetemp predicate is1

10 at night, and the selectivity of the
light predicate is 1

10 during day, the expected cost of this
plan will be 1.1 units, a savings of almost 40%.

More generally, in continuous queries, additional cost
savings can be obtained by exploiting similarities between
queries. For example, if we know that the next query will re-
quire an attribute at a particular nodei, and the current query
plan observes values at nearby nodes, then it is probably better
to visit nodei as well in the current time step.

The optimal solution to such long-term planning problems
can be formulated as aMarkov decision process(MDP) [5,
60]. In an MDP, at each time step, we observe the current
state of the system (in our setting, the current distribution and
query), and choose an action (our observation plan); the next
state is then chosen stochastically given the current state (our
next query and distribution). Unfortunately, traditional ap-
proaches for solving MDPs are exponential in the number of
attributes. Recently, new approximate approaches have been
developed to solve very large MDPs by exploiting structure in



problems represented by graphical models [7, 32]. Such ap-
proaches could be extended to address the long-term planning
problem that arises in our setting.

6.4 In-network processing

Thus far, we have focused on algorithms where the proba-
bilistic querying task occurs in a centralized fashion, and we
seek to find efficient network traversal and data gathering tech-
niques. However, in typical distributed systems, nodes also
have computing capabilities. In such settings, we can obtain
significant performance gains by pushing some of the process-
ing into the network.

In some settings, we can reduce communication by aggre-
gating information retrieved from the network [45, 35]. We
could integrate these techniques with our models by condi-
tioning on the value of the aggregate attributes rather than
the sensor values. Such methods will, of course, increase our
planning space: in addition to finding a path in the network for
collecting the required sensor values, we must decide whether
to aggregate values along the way.

More recently, a suite of efficient algorithms has been de-
veloped for robustly solving inference tasks in a distributed
fashion [31, 56]. In these approaches, each node in the net-
work obtains a local view of a global quantity. For example,
each node computes the posterior probability over a subset of
the attributes given the sensor measurements at all nodes [56];
or each node obtains a functional representation (e.g., a curve
fit) of the sensor (e.g., temperature) field [31]. Given such
distributed algorithms, we can push some of the probabilistic
query processing into the network, allowing nodes to locally
decide when to make observations and when to communicate.
When integrated with a system like BBQ, these methods al-
low the user to connect to any node in the network, which can
collaborate with the rest of the network to answer queries or
detect faulty nodes.

7 Related work
There have been other model-based approaches for query an-
swering that rely on a model-like abstraction [64, 55, 54, 39].
In most cases, the related work assumes a client-server rela-
tionship, where the model runs on the server and monitors
the value of a number of attributes at the clients. These ap-
proaches maintain a bound or trajectory over each of the at-
tribute values at the server, using that bound to predict the
value. When the clients notice that their value no longer fits
the model, or when the server has sufficient bandwidth or en-
ergy, it will directly observe the attribute values and update
the model. Our approach differs from previous research in
that it uses multidimensional probabilistic models that track
the relationship between attributes in addition to the values of
attributes themselves. These relationships, or correlations, al-
low the model to update its value estimates of many attributes
when a single attribute is observed; models can be built across
attributes that are directly observed (e.g., light readings from
sensors), as well as global attributes (e.g., time of day), and
derived attributes (e.g., network loss rate).

There has been substantial work on approximate query pro-
cessing in the database community, often using model-like
synopsesfor query answering much as we rely on probabilis-
tic models. For example, the AQUA project [30, 28, 29] pro-

poses a number of sampling-based synopses that can provide
approximate answers to a variety of queries using a fraction
of the total data in a database. As in our approach, such an-
swers typically include tight bounds on the correctness of an-
swers. AQUA does not exploit correlations. A few recent
papers [18, 27] propose exploiting data correlations through
use of graphical model techniques for approximate query pro-
cessing, but neither provide any guarantees on the answers re-
turned. Recently, Considineet al. [41] and Gibbonset al. [53]
have shown that sketch based approximation techniques can
be applied in sensor networks to compute aggregates. Oth-
ers have proposed approximation techniques for stream-query
processing,e.g., Daset al. [16] and Motwaniet al. [51].

Approximate and best effort caches [55, 54], as well as sys-
tems for online-aggregation [61] and stream query processing
[52, 10, 12] include some notion of answer quality and include
the ability to discard some tuples. Most related work focuses
on quality with respect to summaries, aggregates, or staleness
of individual objects already stored in the system, as opposed
to readings being actively acquired by the query processor.

Several proposals for probabilistic data models have been
made in the literature. For example, ProbView[42] provides a
data model based on discrete pdfs, and shows how to answer
a number of queries in such a domain. Getoor [26] explores a
number of probabilistic extensions to the relational model, and
shows how statistical models can be learned from relations.
Barbaraet al. [3] present some initial results on probabilistic
data models. Faradjianet al. [24] present a data model based
on continuous pdfs. None of these approaches focus on the
data acquisition issues, but rather on representing uncertainty
in the database, and on types of query processing that can be
applied to probabilistic attributes.

The probabilistic modeling techniques we describe are
based on standard results in machine learning and statistics
(e.g., [62, 50, 14]). There are also a number of proposed tech-
niques for outlier detection [4, 1, 2]. We believe, however, that
our approach is one of the first architectures that combines
model-based approximate query answering with query pro-
cessing and optimization and an uncertainty-aware data model
and query language.

8 Conclusions
The integration of database systems with probabilistic model-
ing will enable database systems to tolerate loss, detect faulty
or erroneous inputs, and identify correlations that can be used
to improve query performance while enabling a range of new
types of queries. Such models are particularly useful in ac-
quisitional settings such as sensornets and Internet monitor-
ing where the data acquisition costs are typically very high;
even for non-acquisitional applications, being able to deal
with noisy and lossy data in a seamless manner, and the abil-
ity to model and reason about data correlations can prove to be
tremendously useful. There are a number of architectural and
algorithmic challenges associated with fully integrating these
techniques into database systems and, although we believe we
have taken some initial steps towards this end, we look for-
ward to many years of fruitful cross-disciplinary research. We
envision this research leading to significant improvements in
the utility and efficiency of database systems at managing real-
world data.



References

[1] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional
data. InProceedings of SIGMOD, pages 37–46, 2001.

[2] A. Arning, R. Agrawal, and P. Raghavan. A linear method for deviation
detection in large databases. InProceedings of KDD, 1995.

[3] D. Barbara, H. Garcia-Molina, and D. Porter. The management of prob-
abilistic data.IEEE TKDE, 4(5):487–502, 1992.

[4] V. Barnett and T. Lewis.Outliers in Statistical Data. John Wiley and
Sons, New York, 1994.

[5] R. E. Bellman.Dynamic Programming. Princeton, 1957.
[6] J. Bernardo and A. Smith.BAYESIAN THEORY. Wiley, 1994.
[7] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in

policy construction. InProc. IJCAI, pages 1104–1111, 1995.
[8] X. Boyen and D. Koller. Tractable inference for complex stochastic

processes. InProc. UAI, 1998.
[9] California Department of Transportation. Caltrans realtime freeway

speed map. Web Site.http://www.dot.ca.gov/traffic/ .
[10] D. Carney, U. Centiemel, M. Cherniak, C. Convey, S. Lee, G. Seidman,

M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams - a new
class of data management applications. InVLDB, 2002.

[11] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim. Approx-
imate query processing using wavelets. InVLDB 2000, Proceedings
of 26th International Conference on Very Large Data Bases, September
10-14, 2000, Cairo, Egypt, pages 111–122, 2000.

[12] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, V. Raman,
F. Reiss, and M. A. Shah. TelegraphCQ: Continuous dataflow process-
ing for an uncertain world. InCIDR, 2003.

[13] O. Cooper, A. Edakkunni, M. Franklin, W. Hong, S. Jeffery, S. Krish-
namurthy, F. Reiss, S. Rizvi, and E. Wu. Hifi: A unified architecture for
high fan-in systems. InVLDB, 2004.

[14] R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter.Probabilistic
Networks and Expert Systems. Spinger, New York, 1999.

[15] I. Crossbow. Wireless sensor networks (mica motes).http://www.
xbow.com/Products/Wireless_Sensor_Networks.htm .

[16] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing
over data streams. InProceedings of SIGMOD, 2003.

[17] T. Dean and K. Kanazawa. A model for reasoning about persistence and
causation.Computational Intelligence, 5(3):142–150, 1989.

[18] A. Deshpande, M. Garofalakis, and R. Rastogi. Independence is Good:
Dependency-Based Histogram Synopses for High-Dimensional Data. In
Proceedings of SIGMOD, May 2001.

[19] A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Intel lab
data. Web Page.http://berkeley.intel-research.net/
labdata .

[20] A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting cor-
related attributes in acquisitional query processing. InICDE, 2005.

[21] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. InVLDB, 2004.

[22] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. InVLDB, 2004.

[23] A. Deshpande, S. Nath, P. Gibbons, and S. Seshan. Cache-and-query
for wide area sensor databases. InProceedings of SIGMOD, 2003.

[24] A. Faradjian, J. Gehrke, and P. Bonnet. GADT: A Probability Space
ADT For Representing and Querying the Physical World. InICDE,
2002.

[25] N. Friedman. Learning belief networks in the presence of missing val-
ues and hidden variables. InProc. 14th International Conference on
Machine Learning, pages 125–133, 1997.

[26] L. Getoor. Learning Statistical Models from Relational Data. PhD
thesis, Stanford University, 2001.

[27] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using proba-
bilistic models. InProceedings of SIGMOD, May 2001.

[28] P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct
values queries and event reports. InProc. of VLDB, Sept 2001.

[29] P. B. Gibbons and M. Garofalakis. Approximate query processing: Tam-
ing the terabytes (tutorial), September 2001.

[30] P. B. Gibbons and Y. Matias. New sampling-based summary statistics
for improving approximate query answers. InSIGMOD, 1998.

[31] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden. Dis-
tributed regression: an efficient framework for modeling sensor network
data. InProceedings of IPSN, 2004.

[32] C. E. Guestrin, D. Koller, and R. Parr. Multiagent planning with fac-
tored MDPs. In14th Neural Information Processing Systems (NIPS-14),
pages 1523–1530, Vancouver, Canada, December 2001.

[33] D. Hand, H. Mannila, and P. Smyth.Principles of Data Mining. MIT
Press, 2001.

[34] D. Heckerman. A tutorial on learning with bayesian networks, 1995.

[35] J. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond aver-
age: Towards sophisticated sensing with queries. InProceedings of the
First Workshop on Information Processing in Sensor Networks (IPSN),
March 2003.

[36] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A. Deshpande,
K. Hildrum, S. Madden, V. Raman, and M. Shah. Adaptive query pro-
cessing: Technology in evolution.IEEE Data Engineering Bulletin,
23(2):7–18, 2000.

[37] Intel Research. Exploratory research - deep networking. Web
Site. http://www.intel.com/research/exploratory/
heterogeneous.htm#preventativ%emaintenance .

[38] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld. An
adaptive query execution system for data integration. InProceedings of
SIGMOD, 1999.

[39] A. Jain, E. Change, and Y.-F. Wang. Adaptive stream resource manage-
ment using kalman filters. InProceedings of SIGMOD, 2004.

[40] Jim Madden, Director UCSD Network Operations. Personal communi-
cation, July 2004.

[41] G. Kollios, J. Considine, F. Li, and J. Byers. Approximate aggregation
techniques for sensor databases. InICDE, 2004.

[42] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian. Prob-
view: a flexible probabilistic database system.ACM TODS, 22(3):419–
469, 1997.

[43] U. Lerner, B. Moses, M. Scott, S. McIlraith, and D. Koller. Monitoring
a complex physical system using a hybrid dynamic bayes net. InUAI,
2002.

[44] C. Lin, C. Federspiel, and D. Auslander. Multi-Sensor Single Actuator
Control of HVAC Systems. InInternation Conference for Enhanced
Building Operations, 2002.

[45] S. Madden.The Design and Evaluation of a Query Processing Archi-
tecture for Sensor Networks. PhD thesis, UC Berkeley, 2003.

[46] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design
of an acquisitional query processor for sensor networks. InProceedings
of SIGMOD, 2003. To Appear.

[47] S. Madden, W. Hong, J. M. Hellerstein, and M. Franklin. TinyDB web
page.http://telegraph.cs.berkeley.edu/tinydb .

[48] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless sensor
networks for habitat monitoring. InACM Workshop on Sensor Networks
and Applications, 2002.

[49] MIT CSAIL Center for Information Security and Privacy. Home page.
http://csg.lcs.mit.edu/CISP/ .

[50] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[51] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,

G. Manku, C. Olston, J. Rosenstein, and R. Varma. Query processing,
resource management, and approximation in a data stream management
system. InProceedings of CIDR, 2003.

[52] R. Motwani, J. Window, A. Arasu, B. Babcock, S.Babu, M. Data, C. Ol-
ston, J. Rosenstein, and R. Varma. Query processing, approximation and
resource management in a data stream management system. InFirst An-
nual Conference on Innovative Database Research (CIDR), 2003.

[53] S. Nath and P. B. Gibbons. Synopsis diffusion for robust aggregation in
sensor networks. InProceedings of VLDB, 2004.

[54] C. Olston and J.Widom. Best effort cache sychronization with source
cooperation. InProceedings of SIGMOD, 2002.

[55] C. Olston, B. T. Loo, and J. Widom. Adaptive precision setting for
cached approximate values. InProceedings of SIGMOD, May 2001.

[56] M. A. Paskin and C. E. Guestrin. Robust probabilistic inference in dis-
tributed systems. InUAI, 2004. In the20th International Conference on
Uncertainty in Artificial Intelligence.

[57] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers, 1988.

[58] J. Pearl. Causality : Models, Reasoning, and Inference. Cambridge
University Press, 2000.

[59] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. “Improved His-
tograms for Selectivity Estimation of Range Predicates”. InSIGMOD,
1996.

[60] M. L. Puterman. Markov decision processes: Discrete stochastic dy-
namic programming. Wiley, 1994.

[61] V. Raman, B. Raman, and J. M. Hellerstein. Online dynamic reordering.
The VLDB Journal, 9(3), 2002.

[62] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach.
Prentice Hall, 1994.

[63] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. An analysis of
a large scale habitat monitoring application. InProceedings of SenSys,
2004.

[64] O. Wolfson, A. P. Sistla, B. Xu, J. Zhou, and S. Chamberlain. DOMINO:
Databases fOr MovINg Objects tracking. InProceedings of SIGMOD,
Philadelphia, PA, June 1999.


