
DRAFT, March 2, 2001. Do Not Distribute. 1

Fjording the Stream: An Architecture for Queries over Streaming

Sensor Data

Samuel Madden

madden@cs.berkeley.edu

Michael J. Franklin

franklin@cs.berkeley.edu

March 2, 2001

Abstract

If industry visionaries are correct, our lives will soon be full of sensors, connected together in loose

conglomerations via wireless networks, each monitoring and collecting data about the world at large.

These sensors behave very differently from traditional database sources: they have intermittent connec-

tivity, are limited by severe power constraints, and typically sample periodically and push immediately,

keeping no record of historical information. These limitations make traditional database systems inap-

propriate for queries over sensors. We present the Fjords architecture for managing multiple queries over

many sensors, and show how it can be used to limit sensor resource demands while maintaining high

end-user query throughputs. We evaluate our architecture using traces from a network of traffic sensors

deployed on Interstate 80 near Berkeley, present performance results, and show how query throughput,

communication costs, and power consumption are necessarily coupled in sensor environments.

1 Introduction

Recent developments in wireless networking and embedded processor design have made feasible the vision

of ubiquitous computing [28] in which computers and sensors assist in every aspect of our lives. As this

vision is realized, networked sensors will appear everywhere, and will produce very large amounts of data,

which needs to be combined and aggregated with other sensor data to analyze and react to the world. The

ability to apply traditional data-processing techniques to sensor data is highly desirable. Unfortunately, stan-

dard DBMS assumptions about the characteristics of data sources do not apply to sensors, so a significantly

different architecture is needed.

There are two primary differences between sensor based data sources and standard database sources.

First, sensors typically deliver data in streams: they produce data continuously, often at well defined time

intervals, without having been explicitly asked for that data. Queries over those streams need to be processed

in near real-time, partly because it is often extremely expensive to save raw sensor streams to disk, and partly

because sensor streams represent real-world events, like traffic accidents and attempted network break-ins,

which need to be responded to.

DRAFT, March 2, 2001. Do Not Distribute. 2

The second major challenge with processing sensor data is that sensors are fundamentally different from

the over-engineered data-sources typical in a business DBMS. They do not deliver data at reliable rates, the

data is often garbled, and they have limited processor and battery resources which the query engine needs to

conserve whenever possible.

Our solution to the problem of querying sensor data operates on two levels: First, we propose a modified

query plan architecture called Fjords (“Framework in Java for Operators on Remote Data Streams”), which

allows users to pose long running queries and facilitates the combination of multiple related sensor queries

into a single query-plan. These queries take advantage of non-blocking and windowed operators which are

suited to streaming data. Second, we propose power-sensitive Fjord operators called sensor-proxies which

serve as mediators between the query processing environment and the physical sensors.

A key component of Fjords is that data flows into them from sensors and is pushed into query operators.

Operators do not actively pull data to process, rather, they operate on the samples when sensors make them

available and are otherwise idle. They never wait for a particular tuple to arrive. Because of this passive-

behavior, the adaptive-query processing situation of an operator being “blocked”, waiting for input, does not

arise.

We now present an overview of the sensor-query processing environment and discuss the sensor testbed

which we are building. In the remaining sections, we present the specific requirements of sensor query

processing, propose our solutions for satisfying those requirements, present some initial performance results,

discuss related work, offer directions for future work and conclude.

2 Sensor Environment

In this paper, we focus on a specific type of sensor processing environment in which there are a large

number of fairly simple sensors over which users want to pose queries. For our purposes, a sensor consists

of a remote measurement device that provides data at regular intervals. A sensor may have some limited

processing ability or configurability, or may simply output a raw stream of measurements. Because sensors

have at best limited capabilities, we do not directly involve them in the query processing: they simply relay

their data to a data processing node, which is a fixed, powered, and well-connected server or workstation

with abundant disk and memory resources, such as would be used in any conventional database system. We

call the node which receives sensor data the sensor’s proxy, since it serves as that sensor’s interface into

the rest of the query processor. Typically, one machine is the proxy for many sensors. The general query

environment is shown in Figure 1. Although sensors do not directly participate in query processing, their

proxy can adjust their sample rate or ask them to perform simple aggregation before relaying data, which,

as we will show, is an important aspect of efficiently running queries over many sensors.

We are building this system as a part of the Telegraph [12] query processing engine which is under

development at UC Berkeley. We have extended this system with our Fjords data-flow architecture. In

Telegraph, users pose queries at a workstation on which they expect results to appear. That workstation

translates queries into Fjords through a process analogous to normal query optimization. New Fjords may be

DRAFT, March 2, 2001. Do Not Distribute. 3

Sensor Proxy

Sensor Proxy

Sensors

>

User Terminal
Query
Processor

Tuples

Results

Queries

Figure 1: Environment For Sensor Query Processing

merged into already running Fjords with similar structures over the same sensors, or may run independently.

Queries run continuously because streams never terminate; queries are removed from the system only when

the user explicitly ends the query. Results are pushed from the sensors out toward the user, and are delivered

as soon as they become available.

Information about available sensors in the world is stored in a catalog, which is very similar to a standard

relational catalog. The data which sensors provide is assumed to be divisible into a typed schema, which

users can query much as they would a standard relational data source. Sensors submit samples, which are

keyed by sample time and logically separated into fields; the proxy converts those fields into native database

tuples which local database operators understand. In this way, sensors appear to be standard relational tables;

this is a technique proposed in the Cougar project at Cornell[18], and is consistent with Telegraph’s view of

other non-traditional data sources, such as web pages, as relational tables.

2.1 Traffic Sensor Testbed

We have recently begun working with the Berkeley Highway Lab (BHL), which, in conjunction with the

California Department of Transportation (CalTrans), is interested in deploying a sensor infrastructure on

Bay Area freeways to monitor traffic conditions. The query processing system we present is being built

to support this infrastructure. Thus, in this paper, we will use traffic scenarios to motivate many of our

examples and design decisions.

CalTrans has embedded thousands primitive sensors on Bay Area highways over the past few decades.

These sensors consist of inductive loops that register whenever a vehicle passes over them, and can be used

to determine aggregate flow and volume information on a stretch of road as well as provide gross estimates

of vehicle speed and length. Typically these loops are used to monitor specific portions of the highway by

placing data-collection hardware at sites of interest. Except for the current test project underway (see section

2.2.1), this data is not available for real-time processing; data is simply collected and stored for later, offline

analysis of flow patterns.

DRAFT, March 2, 2001. Do Not Distribute. 4

In the near future, it is expected that real-time sensor data will be widely available, as CalTrans is

working to deploy intelligent sensors which can relay information from all over the Bay Area to its own

engineers and the BHL. With several thousand sensors streaming data, efficient techniques for executing

queries over those streams will become crucial. The exact nature of this new generation of sensors has not

yet been determined, but the Berkeley Smart-Dust project is working on a class of sensors which is very

well-suited to this type of environment.

2.2 Smart-Dust Traffic Sensors

Current research on sensor devices is focused on producing very small sensors that can be deployed in harsh

environments (e.g. the surface of a freeway.) The SmartDust project at UC Berkeley is developing very

small, wireless radio-driven, battery powered sensors called “motes”. Current prototypes are about
�����

cm,

but the ultimate goal is to produce devices in the
� �����

range – about the size of a gnat [16]. Current

prototypes use an Atmel 8bit microprocessor with 8k of RAM running from 1 to 16 MHz, with a small radio

capable of transmitting at 9.6Kbits with a range of a few hundred feet[13]. Other researchers, such as those

at the USC Information Sciences Institute and UCLA have similar models for sensors, which they envision

scattering around a battlefield to observe troop movement, or placing throughout offices in a building to

locate hard-to-find colleagues[14].

In the smart-dust vision, motes could be scattered over the freeway, and could be small enough that they

would not interfere with cars running over them, or could fit easily between the grooves in the roadway.

Sensors could be connected to existing inductive loops, or be augmented with light or pressure sensors

that could detect whenever a car passed over them, inferring location information from the latencies of the

sensors relative to the fixed base stations[20]. Motes would use radios to relay samples to nearby wireless

basestations, which would, in turn, forward them to query processing workstations.

One key component of smart-dust sensors is that they are capable of computation and remote repro-

gramming. This provides control over the source, quality, and density of samples. For example, two sensors

in the same lane within a few feet of each other are virtually guaranteed to see the same set of cars, so

asking both for the same information is unnecessary. However, there may be times when the two sensors

can complement each other – for instance, the light sensor on one mote could be used to corroborate the

reading of the pressure sensor from the other, or to verify that the other is functioning properly.

Similarly, the ability of motes to perform some computation and aggregation allows the computational

burden on the server and the communications burden on the motes to be reduced. For example, rather than

directly transmitting the voltage reading from a light sensor many times a second, motes could transmit a

count of the number of cars which have passed over them during some time interval, reducing the amount of

communication which is required and saving the central server from having to count the number of cars from

the voltage readings. In an environment with tens of thousands of sensors, the benefits of such reductions

can be substantial.

DRAFT, March 2, 2001. Do Not Distribute. 5

Road Sensors

Figure 2: Current Traffic Sensor Visualization

2.2.1 Current Highway Monitoring Infrastructure

The BHL is currently monitoring 32 of CalTrans’ inductive loops using an older-generation of sensors

equipped with wireless radio links that relay data back to UC Berkeley. These sensors consist of sixteen sets

of two sensors (referred to as “upstream” and “downstream”), with one pair on either side of the freeway

on eight distinct segments of I-80 near UC Berkeley. The sensors are 386-class devices with Ricochet 19.2

kilobit modem links to the Internet. They collect data at 60Hz and relay it back to a Berkeley server, where

it is aggregated into counts of cars and average speeds or distributed to various database sources (such as

ours) via JDBC updates. We use this data for many of the simulations presented in this paper.

Figure 2 shows a screenshot of our user interface for querying this small subset of traffic data. The

leftmost panel contains a map of the Bay Area, with the East Bay, near Berkeley, on the right side of the bay.

Squares up and down the freeway near Berkeley – which aren’t visible in a grayscale reproduction so are

labeled with arrows – represent the current state of traffic sensors for which we have data. Police-car icons

represent traffic incidents the California Highway Patrol has reported. On the right hand side are graphs

of speed and flow which display historical trends in traffic conditions. The slider along the top shows the

current time range which is being queried.

As we will show, the streaming nature of sensor data, the limited processing and energy resources of a

very large number of smart-dust sensors, the tendency of wireless connections to drop individual updates or

go completely offline, and the fact that updates occur at imprecise intervals and are pushed into our servers,

yield an environment which is not suitable for a traditional query processing engine.

DRAFT, March 2, 2001. Do Not Distribute. 6

3 Requirements for Query Processing over Sensors

Given our desire to run queries over these traffic sensors, we now examine some of the issues posed by

sensors that are not present in traditional data sources. We begin with a discussion of the physical properties

of sensors, and then discuss the streaming nature of sensor data and the need for persistent, near-real time

queries over it. After summarizing these requirements, we offer our proposed architecture, which has been

developed to meet these demands.

3.1 Limitations of Sensors

Limited resource availability is an inherent property of sensors. Scarce resources include battery capacity,

communications bandwidth, and CPU cycles. Power is the defining limit: it is always possible to use a faster

processor or a more powerful radio, but these require more power which often is not available. Current small

battery technology provides about 100mAh of capacity. This is enough to drive a small Atmel processor,

like the one used in current SmartDust prototypes, at full speed for only 3.5 hours. Similarly, the current

SmartDust radio, which uses about 4 � J per bit of data transmitted, can send a total of 14MB of data using

such a battery.

The principal way that battery power is conserved is by powering down, or sleeping, parts of sensors

when they are not needed. It is very important that sensors maximize the use of these low power modes

whenever possible. An easy way to allow sensors to spend more time sleeping is to decrease the rate at

which sensors collect and relay samples. The database system must enable this by dynamically adjusting

the sample rate based on current query requirements.

In addition to power limitations, smart-dust sensors have the added feature that they include small pro-

cessors which can be used to perform some processing on samples. Database systems need to able to take

advantage of this processing ability, as it can dramatically reduce the power consumption of the sensors and

reduce the load on the query processor itself.

3.2 Streaming Data

Another property of sensors is that they produce continuous, never ending streams of data. Any sensor query

processing system needs to be able to operate directly on such data streams. Because streams are infinite,

operators can never compute over an entire streaming relation: they cannot be blocking. Many traditional op-

erators, such as sorts, aggregates, and some join algorithms, like sort-merge join, therefore, cannot be used.

Instead, the query processor must include special operators which deliver results incrementally, processing

streaming tuples one at a time or in small blocks.

Streaming data also implies that sensors push data into a query plan. The conventional iterator model

does not map well onto sensor streams: changing sensors to sample only when data is requested requires

reprogramming them, which may be difficult or impossible. Even in cases where it is possible, implementing

the iterator model on sensors requires them to waste power and resources. To do so, sensors must keep the

receivers on their radios powered up at all times, listening for requests for data samples. Also, it requires

DRAFT, March 2, 2001. Do Not Distribute. 7

sensors to buffer samples locally until the query processor asks for them, which requires memory that many

sensors do not have.

Since most smart-dust sensors have wireless connections, data streams are delivered intermittently with

significant variability in available bandwidth. Even when connectivity is generally good, wireless sensor

connections can be interrupted by local sources of interference, such as microwaves. Any sensor database-

system needs to expect variable latencies and dropped or garbled tuples, which traditional databases do not

handle. Furthermore, because of these high latencies, an operator looking for a sensor tuple may be forced

to block for some time if it attempts to pull a tuple from the sensor. Thus, operators must process data only

when sensors make it available.

3.3 Processing Complex Queries

Sensors pose additional difficulties in a query processing system which is running complex or concurrent

queries. In many sensor scenarios, multiple users pose similar queries over the same data streams. In the

traffic scenario, commuters will want to know about road conditions on the same sections of road, and so

will issue queries against the same sensors. Since streams are read-only, there is no reason that a particular

sensor reading should not be shared across many queries. As our experiments in Section 5.3 show, this

sharing greatly improves the ability of a sensor-query system to handle many simultaneous queries.

Furthermore, the demands placed on individual sensors vary based on time of day, current traffic condi-

tions, and user requirements. At any particular time users are very interested in some sensors, and not at all

interested in others. A query processing system should be able to account for this by dynamically turning

down the sample and data delivery rates for infrequently queried sensors.

Finally, users querying sensors need a way to name the sensors that exist in the world. Traditional

databases assume that users know the names of the sources they wish to run queries over. In a sensor

environment with thousands of dynamic sensor-streams, this is not a realistic assumption. Instead, users

must be able query the catalog, looking for sources which have desired properties. For instance in our traffic

testbed, users will need to find sensors which are near a specific the part of the freeway.

4 Solution

Having described the difficulties involved in query processing over sensors, we now present our solution,

which, as previously mentioned, consists of two core components: Fjords, an adaptive modular system for

running complex queries over streaming sensor data, and the sensor-proxy, for mediating between sensors

and the query-processor, while taking into account the specific limitations of sensors.

4.1 Fjords: Generalized Query Plans for Sensor Streams

A Fjord is a generalization of traditional approaches to query plans: operators export an iterator-like interface

and are connected together via local pipes or wide area queues. Fjords, however, also provide support for

DRAFT, March 2, 2001. Do Not Distribute. 8

Operator B

Operator C

Scheduler

Operator A Thread 2

Node 1

Thread 1
Controller

WAN

Network Socket

Message

“Create
Operator
Fjords.Join”

Remote Operator

Remote Node

Disk

SensorWireless Net

Figure 3: The Fjord Architecture

integrating streaming data that is pushed into the system with disk-based data which is pulled by traditional

operators. As we will show, Fjords also allow combining multiple queries into a single plan and explicitly

handle operators with multiple inputs and outputs.

Figure 3 shows a simple Fjord running across two machines. Each machine involved in the query runs a

single controller in its own thread. This controller accepts messages to instantiate operators, which include

the set of standard database modules – join, select, project, and so on. The controller also connects local

operators via queues to other operators which may be running locally or remotely. Queues export the same

interface whether they connect two local operators or two operators running on different machines, thus

allowing operators to be ignorant of the nature of their connection to remote machines. Each query running

on a machine is allocated its own thread, and that thread is multiplexed between the local operators via

procedure calls (in a pull-based architecture) or via a special scheduler module that directs operators to

consume available inputs or produce outputs when they are not explicitly called by their parents in the plan.

Fjords are constructed by a Fjord Master, which is analogous to the query planner and optimizer in a

traditional DBMS. It is responsible for choosing the operators to create, the machines to create them on,

and the queues with which to connect those operators. A traditional query plan can be built by choosing

operators from the set of standard operators. These operators pull from their children via function calls in

the local area or transactional queues in the wide area. However, this architecture enables a number of other

configurations which are attractive in the stream-processing domain: for instance, transactional queues can

be replaced with more efficient, less reliable network queues, proxies can be interposed in front of sensors,

and query plans can be dynamically adjusted as sensors come on and off line. Section 4.3 discusses the

ways in which Fjords facilitate sensor-based queries. The following section discusses the specifics of Fjord

operators and queues in more detail.

DRAFT, March 2, 2001. Do Not Distribute. 9

4.1.1 Operators and Queues

Operators form the core computational unit of Fjords. Each operator � has a set of input queues, ��� and a

set of output queues ��� . � reads tuples in any order it chooses from ��� and outputs any number of tuples

along � � . This definition of operators is intentionally extremely general: Fjords are a dataflow architecture

that is suitable for building more than just traditional query plans.

Queues are responsible for routing data from one operator (the input operator) to another (the output

operator.) Queues have only one input and one output and perform no transformation on the data they carry.

Like operators, queues are a general structure. Specific instances of queues can connect local operators or

remote operators, behave in a push or pull fashion, or offer transactional properties which allow them to

guarantee exactly-once delivery.

4.1.2 State Based Execution Model

The programming model for operators is based upon state machines: each operator in the query plan repre-

sents a state in a transition diagram, and as such, an operator is required to implement only a single method:
�	��
����������
������������� � which, given a current state � and some set of inputs � causes the operator to transi-

tion to a new state (or return to the same state) and possibly produce some set of output tuples � . Implicit

with this model of state programming is that operators never block. When an operator needs to poll for

data, it checks its input queue once per
�!�"������
#�#�$� call, and simply transitions back to � until data becomes

available.

Formulating query plan operators as state-machine states presents several interesting issues. First, it

leads to operators which are neither “push” nor “pull”: they simply look for input and operate on that input

when it is available. Traditional pull-based database semantics are implemented via the queue between two

operators: when an operator looks for data on a pull-based input queue, that queue issues a procedure call to

the child operator asking it to produce data and forces the caller to block until the child produces data. This

allows operators to be combined in arbitrary arrangements of push and pull.

Figure 4 shows an example selection operator (Figure 4a) and pull queue (Figure 4b.) The selection

operator simply checks its queue to see if there is data available; the queue may or may not actually return

a tuple. If that queue is an instance of a pull queue, the
#���"���%��
����� method of the operator below will be

called until it produces a tuple or an error.

Second, state-machine programming requires a shift the in database-programmer’s thinking about how

operators work. Telling a module to
����������
����� does not force it to produce a tuple, or constrain it to

producing only a single tuple. The module computes for some period of time, then returns control to the

scheduler which chooses another module to
����������
����� to. A badly behaved operator can block for long

periods of time, effectively preventing other operators from being able to run if all modules are in a single

thread. The scheduler can account for this to some extent, by using a ticket scheme where operators are

charged a number of tickets proportional to the amount of time they compute, as in [27]. This problem,

however, is not restricted to Fjords: in general, faulty operators can impair an iterator-based query plan

DRAFT, March 2, 2001. Do Not Distribute. 10

public class Select extends Module �
Predicate filter; //The selection predicate to apply
QueueIF inputQueue;
...
public TupleIF transition(StateIF state) �

MsgIF mesg;
TupleIF tuple = null;
//Look for data on input queue
mesg = inputQueue.get();
if (mesg != null) �

//If this is a tuple, check to see if predicate passes it
if (mesg instanceof TupleMsg &&

filter.apply(((TupleMsg)mesg).getTuple()))
tuple=((TupleMsg)mesg).getTuple();

else ... handle other kinds of messages ...�
... adjust state: Select is stateless, so nothing to do here ...
return tuple; //returning null means nothing to output�

�

(a)Selection Operator

public class PullQueue implements
QueueIF �

//Modules this Queue connects
Module below, above;
StateIF bSt;
...
public MsgIF get() �

TupleIF tup=null;
//Loop, pulling from below
while (tup == null) �

tup=below.transition(bSt);
... check for errors, idle ...�

return new TupleMsg(tuple);�
�

(b)Pull Queue

Figure 4: Code Snippet For Selection Operator and Pull Queue

as well. In our experience, we have not found that this state-machine model makes operator development

overly difficult.

One important advantage of a state machine model is that it reduces the number of threads. Traditional

push-based schemes place each pushing operator in its own thread; that operator produces data as fast

as possible and enqueues it. The problem with this approach is that operator-system threads packages

often allow only very coarse control over thread scheduling, and database systems may want to prioritize

particular operators at a fine granularity rather than devoting nearly-equal time slices to all operators. Our

scheduler mechanism enables this kind of fine-grain prioritization by allowing Fjord builders to specify

their own scheduler which
#���"���%��
������� some modules more frequently than others. Furthermore, on some

operating systems, threads are quite heavyweight: they have a high memory and context-switch overhead

[29]. Since all state machine operators can run in a single thread, we never pay these penalties, regardless

of the operating system.

4.1.3 Flexible Data Flow

In addition to the benefits of the state-machine model, an important advantage of Fjords is that they allow

distributed query plans to use a mixture of push and pull connections between operators. Push or pull is

implemented by the queue: a push queue relies on its input operator to ���
 data into it which the output

operator can later ���
 . A pull queue actively requests that the input operator produce data (by calling its

�!�"������
#�#�$� method) in response to a ���
 call on the part of the output operator (see Figure 4b).

Push queues make it possible for sensor streams to work. When a sensor tuple arrives at a sensor-proxy,

that proxy pushes those tuples onto the input queues of the queries which use it as a source. The operators

draining those queues never actively call the sensor proxy; they merely operate on sensor data as it is pushed

into them.

DRAFT, March 2, 2001. Do Not Distribute. 11

4.1.4 Sensor-Sensitive Operators

Fjords can use standard database operators, but to be able to run queries over streaming data, special opera-

tors that are aware of the infinite nature of streams are required . Aggregates like average and count cannot

be applied to a stream of data; neither can sorts. Some joins, such as sort-merge join, which require the

entire outer relation also fail. We use a variety of special operators in place of these blocking solutions.

First, non-blocking join operators can be used to allow joins over streaming data. Such operators have

been discussed in detail in adaptive query processing systems such as Xjoin [26], Tukwila [15], and Eddy

[3]. We have implemented an in memory symmetric hash-join [30], which maintains a hashtable for each

relation. When a tuple arrives, it is hashed into the appropriate hash table, and the other relation’s table is

probed for matches. This technique finds all joining tuples, is reasonably efficient, is tolerant to delays in

either data source, and is non-blocking with respect to both relations.

It is also possible to define aggregate operators, like count and average, which output results periodically;

whenever a tuple arrives from the stream, the aggregate is updated, and its revised value is forwarded to the

user. Of course, this incremental aggregation requires operators upstream from the aggregates to understand

that values are being updated, and for the user interface to redisplay updated aggregate values. Similar

techniques were also developed in the context of adaptive databases, for instance, the Niagara Internet

Query System [24].

If traditional (i.e. blocking) aggregates, sorts, or joins must be used, a solution is to require that these

operators specify a subset of the stream which they operate over. This subset is typically defined by upper

and lower time bounds or by a sample count. Defining such a subset effectively converts an infinite stream

into a regular relation which can be used in any database operator. This approach is similar to previous work

done at Cornell on windows in sequence database systems [23].

Instead of using windowed operators, we can rely on a user interface to keep tuples in a sorted list and

update aggregates as tuples arrive. Such an interface needs other functionality: as tuples stream endlessly

in, it will eventually need to discard some of them, and thus some eviction policy is needed. Furthermore,

since queries never end, the user needs to be given a way to stop a continuous query midstream. The Control

project discusses a variety approaches to such interfaces[11].

By integrating these non-blocking operators into our system, we can take full advantage of Fjords’ ability

to mix push and pull semantics within a query plan. Sensor data can flow into Fjords, be filtered or joined

by non-blocking operators, or be combined with local sources via windowed and traditional operators in a

very flexible way.

4.2 Sensor Proxy

The second major component of our sensor-query solution is the sensor-proxy, which acts as an interface

between a single sensor and the Fjords querying that sensor. The proxy serves a number of purposes. The

most important of these is to shield the sensor from having to deliver data to hundreds of interested end-

users. It accepts and services queries on behalf on the sensor, using the sensor’s processor to simplify this

DRAFT, March 2, 2001. Do Not Distribute. 12

task when possible.

In order to keep the sensor’s radio-receiver powered down as much as possible, the proxy only sends

control messages to the sensor during limited intervals. As a sensor relays samples to the proxy, it occasion-

ally piggybacks a few bytes indicating that it will listen to the radio for some short period of time following

the current sample. The exact duration of this window and interval between windows depends on the sensors

and sample rates in question; we expect that for our traffic sensor environment the window size will be a

few tens-of-milliseconds per second. Though this is a significant power cost, it is far less than the cost of

keeping the receiver powered up at all times.

One function of control messages is to adjust the sample rate of the sensors, based on user demand. If

users are only interested in a few samples per second, there’s no reason for sensors to sample at hundreds

of hertz, since lower sample rates are directly proportional to longer battery life. Similarly, if there are no

user queries over a sensor, the sensor proxy can ask the sensor to power off for a long period, coming online

every few seconds to see if queries have been issued.

An additional role of the proxy is to direct the sensor to aggregate samples in predefined ways, or to

download a completely new program into the sensor if needed. For instance, in our traffic scenario, the

proxy might direct the sensor to use one of the three sampling algorithms presented in Section 6 below. Or,

if the proxy observes that all of the current user queries are interested only in samples with values above

or below some threshold, the proxy can instruct the sensor to not transmit samples outside that threshold,

thereby saving communication.

Sensor-proxies are long-running services that exist across many user queries and route tuples to different

query operators based on sample rates and filtration predicates specified by each query. When a new user

query over a sensor-stream is created, the proxy for that sensor is located and the query is installed. When

the user stops the query, the proxy stops relaying tuples for that query, but continues to monitor and manage

the sensor, even when no queries are being run.

We expect that in many case there will be a number of users interested in data from a single sensor. As

we show in Section 5.3 below, the sensor proxy can dramatically increase the throughput of the Fjord by

limiting the number of copies of sensor tuples flowing through the query processor to just one per sample,

and having the user queries share the same tuple data.

4.3 Putting It All Together

Given Fjords and Sensor proxies as the main elements of our solution, it is straightforward to generate a

Fjord from a user query over a sensor. As stated earlier there are some forms of queries we simply cannot

support over streams due to their infinite nature. In particular, we cannot join two streams 1 nor can we

aggregate or sort a stream. Users are allowed to define windows on streams which can be sorted, aggregated,

or joined. A single stream can be joined with a stream-window or a fixed data source if it is treated as the
1Two streams can be joined by “zippering” them together as they flow past, but this works only when streams are synchronized

and eqi-joined on sample time.

DRAFT, March 2, 2001. Do Not Distribute. 13

outer relation. Users can optionally specify a sample-rate for sensors, which is used to determine the rate at

which tuples are delivered for the query.

Users may not know exactly which sensors they wish to query. To solve this, we are in the process of

implementing a distributed, XML-based, queryable catalog which can be rapidly updated as sensors go on

and offline. We associate semantic tags with each sensor that allow a user to determine relationships between

sensors and find appropriate alternative sensors to query when a desired sensor is down. Existing service-

catalog technologies, such as LDAP and the Service Discovery Service [9] provide similar technology,

although capabilities to discover related services are not explicitly built-in. Using this catalog, we presume

that users will formulate SQL-style queries over the sensors they wish to query. We give examples of such

queries in Section 5.1 below.

Building the Fjord from such a query works as follows: for each base relation � , if � is a sensor, we

locate the persistently running sensor proxy for � and install our query into it, asking it to deliver tuples at

the user-provided sample rate and also to apply any filters or aggregates which the user has specified for

the sensor-stream. The sensor proxy may choose to fold those filters or aggregates into existing predicates

it has been asked to apply, or it may request that they be managed by separate operators. For all relations
� that do not represent sensors, we create a new scan operator over � . We then instantiate each selection

operator, connecting it to a base-relation scan or earlier selection operator as appropriate. If the base-relation

is a sensor, we connect the selection via a push-queue, meaning that the sensor will push results into the

selection. For non-sensor relations, we use a pull queue, which will cause the selection to invoke the scan

when it looks for a tuple on its input queue.

We then connect join-operators to these chains of scans and selects, performing joins in the order indi-

cated by a standard static query optimizer, such as the one presented in [22]. If neither of the joined relations

represents a sensor, we choose the join-method recommended by the optimizer. If one relation is a sensor,

we use it as the outer relation of a hash or nested loops join, probing into the inner relation as each stream

tuple is pushed into the join. The output of a join is a push queue if one relation is from a sensor, and a pull

queue otherwise.

Sorts and aggregates are placed at the top of the query plan. In the case where one of the relations is

from a sensor, but the user has specified a window size, we treat this as a non-sensor relation by interposing

a filtration operator above the sensor proxy which passes only those tuples in the specified window.

5 Traffic Implementation and Results

We now present two performance studies to motivate the architecture given above. The first study, given in

this section, covers the performance of Fjords. The second study, given in Section 6, examines the interaction

of sensor power consumption and the sensor-proxy and demonstrates several approaches to traffic sensor

programs which can dramatically alter sensor lifetime.

In this section, we show how the Fjord and sensor-proxy architectures can be applied to the traffic-

sensor environment. We begin by giving examples of queries over those sensors, then show alternatives for

DRAFT, March 2, 2001. Do Not Distribute. 14

translating one of those queries into a Fjord, and then finally present two Fjord performance experiments.

5.1 Traffic Queries

We present here two sample queries which we will refer to through the rest of the section, as given by

the following SQL excerpts. These queries are representative of the types of queries commuters might

realistically ask of a traffic inquiry system. They are not meant to test the full functionality of our query

evaluation engine. We are not, as of yet, committed to SQL as the language of choice for queries over sensor

data but it is the language our tools currently support.
Query 1
SELECT AVG(s.speed, �)
FROM sensorReadings AS s
WHERE s.segment �� � � � ��� � � � � �
 �

This query selects the average speed over segments of the road, using an average window interval of � .

These queries can be evaluated using just the streaming data currently arriving into the system.They require

no additional data sources or access to historical information.
Query 2
SELECT AVG(s.speed, �), i.description
FROM incidents as i,

sensorReadings as S
WHERE i.time >= now -
� � ��� �����"� �

AND i.segment = s.segment
AND AVG(s.speed, �) < � � � � �
	�� � � ��� ����
AND s.segment ��� � � � � ��� � � � � �
 �
�

GROUP BY i.description
This query joins sensor readings from slow road segments the user is interested in to traffic incidents

which are known to have recently occurred in the Bay Area. Slow road segments are those with an aver-

age speed less than � � � � �
	�� � � ��� ���� . The set of segments the user is interested in is
� � � � ��� � � � � �
�� .

Recently means since
� � ��� ������� � seconds before the current time. The California Highway Patrol main-

tains a web site of reported incidents all over California, which we can use to build the incidents relation.

[5]. Evaluating this query requires a join between historical and streaming data, and is considerably more

complicated to evaluate than Query 1.

5.2 Traffic Fjords

In this section, we show two alternative Fjords which correspond to Query 1 above. Space limitations

preclude us from including similar diagrams for Query 2; we will discuss the performance of Query 2

briefly in Section 5.3.2.

Figure 5 shows one Fjord which corresponds to Query 1. Like the query, it is quite simple: tuples

are routed first from the BHL server to a sensor proxy operator, which uses a JDBC input queue to accept

incoming tuples. This proxy collects streaming data for various stations, averages the speeds over some

time interval, and then routes those aggregates to the multiplex operator, which forwards tuples to both a

DRAFT, March 2, 2001. Do Not Distribute. 15

Multiplex

segment ∈
{userSegment}?

User

Output
Stream

Fjord

Wireless Sensors

BHL Server and
Wireless Basestation

Air

Data Stream

{ ... sId, time,
measSpeed ... }

AVG(Speed) over
time interval

Sensor Proxy

Figure 5: Fjord Corresponding to Query 1

save-to-disk operator and a filter operator for the � clause in query 1. The save-to-disk operator acts as a

logging mechanism: users may later wish to recall historical information over which they previously posed

queries. The filter operator selects tuples based on the user query, and delivers to the user a stream of current

speeds for the relevant road segment.

Notice that the data flow in this query is completely push driven: as data arrives from the sensors, it

flows through the system. User queries are used to parameterize Fjord operators, but the queries themselves

do not cause any data to be fetched or delivered. Also note that user queries are continuous: data is delivered

periodically until the user aborts the query. The fact that data is pushed from sensors eliminates problems

that such a system could experience as a result of delayed or missing sensor data: since the sensor is driving

the flow of tuples, no data will be output for offline sensors, but data from other sensors flowing through the

same Fjord will not be blocked while the query processor waits for those offline sources.

Figure 5 works well for a single query, but what about the case where multiple users pose queries

of the same type as Query 1, but with different filter predicates for the segments of interest? The naive

approach would be to generate multiple Fjords, one per query, each of which aggregates and filters the data

independently. This is clearly a bad idea, as the allocation and aggregation of tuples performed in the query

is identical in each case. The ability to dynamically combine such queries is a key aspect of the Fjords

architecture, and is similar to work done as a part of Wisconsin’s NiagaraCQ project[6]. A Fjord with such

a combined sensor-proxy is illustrated in Figure 6.

5.3 Fjords for Performance

Having described the Fjords for our example queries, we now present two experiments related to Fjords: In

the first, we demonstrate the performance advantage of combining related queries into a single Fjord. In the

second, we demonstrate that the Fjords architecture allows us to scale to a large number of simultaneous

queries.

We implemented the described Fjords architecture, using join and selection operators which had already

been built as a part of the Telegraph dataflow project. All queries were run on a single, unloaded Pentium

DRAFT, March 2, 2001. Do Not Distribute. 16

III 933Mhz with a single EIDE drive running Linux 2.2.18 using Sun’s Java Hotspot 1.3 JDK. To drive the

experiments we use traces obtained from the BHL traffic sensors. These traces are stored in a file, which is

read once into a buffer at the beginning of each experiment so that tests with multiple queries over a single

sensor are not penalized for multiple simultaneous disk IOs on a single machine. This data set consists of

records of the form �
#� � � � ��� � � �%
 ��
����� � ��� � � � � � � ��� ��� � � � , with the following values:

� � � : The start time of this sample window ��� � : The lane for this sample��
 ��
����� : The station number for this sample��� � � � � � � ��� : The average speed of vehicles observed in this sample
� � � : The number of vehicles observed in this sample

For the particular queries discussed here, sample window size is not important, so we generate traces

with 30-second windows. The trace file contained 10767 30-byte records corresponding to traffic flow at a

single sensor during June ’00.

5.3.1 Combining Fjords to Increase Throughput

For the first experiment, we compare two approaches to running multiple queries over a single streaming

data source. For both approaches, some set of � user queries, � , is submitted. Each query consists of a

predicate to be evaluated against the data streaming from a single sensor. The first approach, called the

multi-Fjord approach allocates a separate Fjord (such as the one shown in Figure 5) for each query � � � .

In the second approach, called the single Fjord approach, just one Fjord is created for all of the queries. This

Fjord contains a filter operator for each of the � queries (as shown in Figure 6.) Thus, in the first case, �
threads are created, each running a Fjord with a single filter operator, while in the second case, only a single

thread is running, but the Fjord has � filter operators. We implemented a very simple round-robin scheduler

which schedules each operator in succession, one after the other, which is used in both cases.

In order to isolate the cost of evaluating filters, we also present results for both of these architectures

when used with no filter operator (e.g. the sensor proxy outputs directly to the user-queue), and with a

Multiplex

segment ∈
{userSegment}?

AVG(Speed) over
time interval

Sensor Proxy

Users

Fjord

Wireless Sensors

BHL Server and
Wireless Basestation

Air

Data Stream

{ ... sId, time,
measSpeed ... }

segment ∈
{userSegment}?segment ∈

{userSegment}?

Figure 6: Fjord Corresponding to Query 1 For Multiple User Queries

DRAFT, March 2, 2001. Do Not Distribute. 17

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10

T
ot

al
 R

un
ni

ng
 T

im
e

(m
se

c)

Number of Queries

Single-Fjord

Multi-Fjord

Single Fjord, No Filters
Single Fjord, Null Filter

Single Fjord, Select
Fjord per Query, No Filters
Fjord per Query, Null Filter

Fjord per Query, Select

(a)Total Running Time vs. No. of Queries

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10

P
er

 Q
ue

ry
 R

un
ni

ng
 T

im
e

(m
se

c)

Number of Queries

Single-Fjord

Multi-Fjord

(b) Time Per Query vs. No. of Queries

Figure 7: Effect of Combining Multiple Queries Into A Single Fjord

null-operator that simply forwards tuples from the sensor proxy to the end user.

Figure 7 shows the performance results of the two experiments, showing total query time (Figure 7(a))

and time per query (Figure 7(b)). All experiments were run with 150 MB of RAM allocated to the JVM and

with a 4MB tuple pool allocated to each Fjord. Notice that the single-Fjord version handily outperforms the

multi-Fjord version in all cases, but that the cost of the selection and null-filter is the same in both cases

(300 and 600 milliseconds per query, respectively). This behavior is due to several reasons: First, there is

substantial cost for laying out additional tuples in the buffer pools of each of the Fjords in the multi-Fjord

case. In the single Fjord case, each tuple is read once from disk, placed in the buffer pool, and never again

copied. Second, there is some overhead due to context switching between multiple Fjord-threads. Figure

7(b) reflects the direct benefit of sharing the sensor-proxy: additional queries in the single-fjord version

are less expensive than the first query, whereas they continue to be about the same amount of work as a

single query in the multi-fjord version. The spike in the multi-fjords lines at two queries in 7(b) is due to

queries building up very long queues of output tuples, which are drained by a separate thread. Our queues

become slower when there are more than a few thousand elements on them. This does not occur for more

simultaneous queries because each Fjord-thread runs for less time, and thus each output queue is shorter

and performs better. This is the same reason the slope of the single-fjord lines in Figure 7(b) drops off: all

queries share a single output queue, which becomes very long for lots of queries.

DRAFT, March 2, 2001. Do Not Distribute. 18

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t :

 T
ot

al
 T

up
le

s
P

er
 S

ec
on

d

Number of Queries

(a) Total Tuples Per Second vs. No. of Queries

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t :

 T
up

le
s

P
er

 S
ec

on
d

P
er

 Q
ue

ry

Number of Queries

366

162 85 42

(b) Tuples Per Second Per Query vs. No. of

Queries

Figure 8: Tuple Throughput vs. Number of Queries

5.3.2 Scaling to a Large Number of Queries

In the previous section, we showed the advantage of combining similar user-queries into a single Fjord.

Now, in the second experiment, we show that this solution makes it possible to handle a very large number

of user queries. In these tests, we created � user queries, each of which applied a simple filter to the same

sensor stream, in the style of Query 1 in Section 5.1. We instantiated a Fjord with a single sensor proxy,

plus one selection operator per query. We allocated 150MB of RAM to the query engine and gave the Fjord

a 4MB tuple pool. We used the same data file as in the previous section. Figure 8(b) shows the number of

tuples which the system processes per second per query versus � , while Figure 8(a) shows the the aggregate

number of tuples processed versus � . The number of tuples per second per query is the limit of the rate

at which sensors can deliver tuples to all users and still stay ahead of processing. Notice that total tuple

throughput climbs up to about 20 queries, and then remains fairly constant. This leveling off happens as the

processor load becomes maximized due to evaluation of the select clauses and enqueuing and dequeuing of

tuples.

We also ran similar experiments from Query 2 (Section 5.1). Due to space limitations, we do not present

these results in detail. The results of this experiments were similar to the Query 1 results: the sensor-proxy

amortizes the cost of stream-buffering and tuple allocation across all the queries. With Query 2, the cost

of the join is sufficiently high that the benefit of this amortization is less dramatic: 50 simultaneous queries

have a per query cost which is only seven-percent less than the cost of a single query.

6 Controlling Power Consumption via Proxies

The experiments in the previous section demonstrated the ability of Fjords to efficiently handle many queries

over streaming data. We now turn our attention to another key aspect of sensor query processing, the impact

DRAFT, March 2, 2001. Do Not Distribute. 19

of sample rate on both sensor lifetime and the ability of Fjords to process sensor data. In this section, we

focus on sensors that are similar to the Smart-Dust motes described in Section 2.2 above. We choose to

use this design rather than the fixed traffic sensors which are currently deployed on the freeway because

we believe this is a more realistic model of the way sensors in the near future will behave, and because

SmartDust sensors can be remotely reprogrammed, which is necessary for implementing the techniques we

describe below.

6.1 SmartDust for Traffic

In this section, we assume that smart-dust motes are placed or can self-organize into pairs of sensors less

than a car’s-length apart and in the same lane. We call these sensors ��� , the upstream sensor, and ��� , the

downstream sensor. We assume that through radio-telemetry with fixed basestations and each other, of the

sort described in [20], it is possible for the sensors to determine that their separation along the axis of the

road is � feet. These sensors are equipped with light or infrared detectors that tell them when a car is passing

overhead.

Traffic engineers are interested in deducing the speed and length of vehicles traveling down the freeway;

this is done via four time-readings:
�� , the time the vehicle covers � � ;
�� , the time the vehicle completely

covers both ��� and ��� ;

	 , the time the vehicle ceases to cover ��� , and
 � , the time the vehicle no longer

covers either sensor. These states are shown in Figure 9. Notice that the collection of these times can be done

independently by the sensors, if the query processor knows how they are placed: ��� collects
 � and

	 , while
��� collects
 � and
 � . Given that the sensors are � feet apart, the speed of a vehicle is then �� �
 ���
 � � �
��!� ��� ,
since
 ���
 � is the amount of time it takes for the front of the vehicle to travel from one sensor to the other

to the other. The length of the vehicle is just � � � � ��� �
 ���
�	 � , since
 ���

	 is the time it takes for both the

front and back of the car to pass the ��� 2.

These values are important because they indicate how accurate the timing measurements from the sen-

sors need to be; imagine for instance that we wanted an estimate of the length of a car to an accuracy of

one foot. To do this, readings
 � and

	 must be made to an accuracy of 6 inches, so that the maximum

error of
 ���
�	 is no greater than 12 inches. Thus, the car cannot travel more than 6 inches between sample

periods. At 60mph, simple physics tells us a car will travel 6 inches in .0056 seconds, requiring a sample

rate of about 180Hz. This is a relatively high sample rate, and, as we will show in the next section, in a

naive implementation where sensors transmit every sample back to the host computer for speed and length

detection, is high enough to severely limit the life of sensors and constrain the performance of the Fjord.

Notice that this calculation assumes the speed of the vehicle is known; if we are estimating the length of the

vehicle from our speed estimation, an even faster sample rate is needed.
2This analysis was derived based on computations for inductive loop sensors in [8].

DRAFT, March 2, 2001. Do Not Distribute. 20

w

w w

t0: Vehicle Covers Su t1: Vehicle Covers Su and Sd

t2: Vehicle Covers Sd t3: Vehicle Covers Neither Sensor

Figure 9: Vehicle moving across sensors ��� and ��� at times
 � ,
 � ,

	 , and
 �

6.2 Sensor Power-Consumption Simulation

The results described in this section were produced via simulation. Processor counts were obtained by

implementing the described algorithms on an Atmel simulator, power consumption figures were drawn

from the Atmel 8515 datasheet [2], and communication costs were drawn from the TinyOS results in [13],

which uses the RFM TR100 916 Mhz [21] radio transceiver. Table 1 summarizes the communication and

processor costs used to model power consumption in this section.

We present three sensor scenarios. In the first, sensors relay data back to the host PC at their sample

rate, performing no aggregation or processing, and transmitting raw voltages. The code is extremely simple:

the sensor reads from its A-to-D input, uses the TinyOS communications protocol to transmit the sample,

then sleeps until the next sample period arrives. In this naive approach, power consumption is dominated by

communication costs. Figure 10(a) illustrates this; the idle cost, computation cost, and A-to-D costs are all

so small as to be nearly invisible. For the baseline sample rate of 180Hz, the power draw comes to 13mW

or 2.6mA/h, enough for our smart-dust sensor pairs to power themselves for about a day and a half: clearly

this approach does not produce low-maintenance road sensors. Furthermore, this approach places a burden

on the database system: as Figure 8(a) shows, at 180 samples/per second a Fjord is limited to about 50

simultaneous simple queries, if the entire sample stream is routed through each query. In practice, of course,

Table 1: Sensor Parameter Values. Power Parameters for Atmel 8515 Processor and RFM TR100 Radio.
Parameter Value
Radio Xmit Energy Cost ��� ���	��
���	�����
Processor Voltage �	�
Processor Current (Active) �����
Processor Current (Idle) �	�����
Processor Speed �� �"!
A-to-D Current � �����
A-to-D Latch Time �	����#
Battery Capacity �$�%���'&(�

DRAFT, March 2, 2001. Do Not Distribute. 21

1 10 100 1000 10000 1e+05

Samples / Sec (log)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Po
w

er
 C

on
su

m
pt

io
n

(W
)

Communication Cost
Computation Cost

Idle Cost
A to D Cost

Power Consumption vs. Samples / Sec

Transmit Every Sample

Sensor Lifetime @ 180Hz = 38 Hours

(a)

1 10 100 1000 10000 1e+05

Samples / Sec (log)

0

0.01

0.005

0.0025

0.0075

Po
w

er
 C

on
su

m
pt

io
n

(W
)

Communication Cost
Computation Cost

Idle Cost
AtoD Cost

Power Consumption vs. Samples / Sec

Transmit once Per Vehicle

Sensor Lifetime @ 180 Hz = 454 Hours

(b)

1 10 100 1000 10000 1e+05

Samples / Sec (log)

0

0.005

0.0025

0.0075

Po
w

er
 C

on
su

m
pt

io
n

(W
)

Communication Cost
Computation Cost

Idle Cost
AtoD Cost

Power Consumption vs. Samples / Sec

Transmit once Per Second

Sensor Lifetime @ 180Hz = 1315 Hours

(c)

Figure 10: Power consumption for different sensor implementations

not all of the queries are interested in the entire data stream, so the sensor-proxy can aggregate the samples

into identified vehicles or vehicle counts.

In the second scenario (shown in Figure 8(b)), we use a small amount of processor time to dramatically

reduce communication costs. Instead of relaying raw voltages, the sensors observe when a car passes over

them, and transmit the �
 � ��

	�� or �
 � ��
 � � tuples needed for the host computer to reconstruct the speed

and length of the vehicle. The sensors still sample internally at a fast sample rate, but relay only a few

samples per second – in this case, we assume no more than five vehicle pass in any particular second. This

corresponds to a vehicle every 18 feet at 60 MPH, which is a very crowded (and dangerous!) highway.

Power consumption versus sample rate on each sensor is shown in Figure 10(b). In this example, for higher

sample rates, power consumption is dominated by the processor and A-to-D converter; communication is

nearly negligible. At 180Hz, the total power draw has fallen to 1.1mW, or .22mA/h, still not ideal for a long

lived sensor, but enough to power our traffic sensors for a more reasonable two and a half weeks. Also, by

aggregating and decreasing the rate at which samples are fed into the query processor, the sensors contribute

to the processing of the query and require fewer tuples to be routed through Fjords. Although this may seem

like a trivial savings in computation for a single sensor, in an environment with hundreds or thousands of

traffic sensors, it is non-negligible.

In the final scenario, we further reduce the power demands by no longer transmitting a sample per

car. Instead, we only relay a count of the number of vehicles that passed in the previous second, bringing

communications costs down further for only a small additional number of processor instructions per sample.

This is shown in Figure 10(c); the power draw at 180Hz is now only .38mW, a threefold reduction over the

second scenario and nearly two orders of magnitude better than the naive approach. Notice that the length

and speed of vehicles can no longer be reconstructed; only the number of vehicles passing over each sensor

per second is given. We present this scenario as an example of a technique that a properly programmed

sensor-proxy could initiate when it determines that all current user queries are interested only in vehicle

counts.

DRAFT, March 2, 2001. Do Not Distribute. 22

To summarize, for this particular sensor application, there are several possible approaches to sampling

sensors. For traffic sensors, we gave three simple sampling alternatives which varied in power consumption

by nearly two orders of magnitude. Thus, the choice of sensor programs reflect essential tradeoffs when

dealing with low-power computing, and have a dramatic effect on battery life. Lowering the sample rate

increases sensor lifetime but reduces the accuracy of the sensor’s model. Aggregating multiple samples in

memory increases processor and CPU burden but reduces communication cost. Therefore, a sensor-proxy

which can actively monitor sensors, weighing user needs and current power conditions, and appropriately

program and control sensors is necessary for getting acceptable sensor battery life and performance.

7 Related Work

Having presented our solution for queries over stream sensor data, we now discuss related projects in the

sensor and database domains.

7.1 Related Database Projects

The work most closely related to ours is the Cougar project at Cornell [18]. Cougar is also intended for

query processing over sensors. Their research, however, is more focused on modeling streams as persistent,

virtual relations and enabling user queries over sensors via abstract data-types. Their published work to date

does not focus on the power or resource limitations of sensors, because it has been geared toward larger,

powered sensors. They do not discuss the push based nature of sensor streams. Our work is complementary

to their in the sense that they are more focused on modeling sensor-streams, whereas we are interested in

the practical issues involved in efficiently running queries over streams.

There has been recent work on databases to track moving objects, such as [31]. In such systems, object

position updates are similar to sensor tuples in that they arrive unpredictably and their arrival rate is directly

tied to number of queries which the database system can handle. Thus, such mobile databases could be an

application for the techniques we present in this paper.

7.2 Distributed Sensor Networks

In the remote sensing community, there are a number of systems and architecture projects focused on build-

ing sensor networks where data-processing is performed in a distributed fashion by the sensors themselves.

In these scenarios, sensors are programmed to be application-aware, and operate by forwarding their read-

ings to nearby sensors and collecting incoming readings to produce a locally consistent view of what is

happening around them. As information propagates around the network, each sensor is better able to form

a model of what is going on. An example of such a project is the Directed Diffusion model from the USC

Information Sciences Institute; Users pose queries to a particular sensor about people or vehicles moving in

some region, and sensors near that region propagate their local readings to the queried which it aggregates

to answer the query [14]. It is exciting to think that such a decentralized model of query processing is pos-

DRAFT, March 2, 2001. Do Not Distribute. 23

sible; however, we believe that, at least for the current generation of sensors, power, storage, and processor

limitations dictate that fixed, powered servers are needed to perform large scale sensor data-processing on

the sensors themselves.

7.3 Data Mining on Sensors

Current scientific sensor research is similar to any data mining and warehousing application: data flows into

local servers from each sensor, which create on-disk sensor logs. At some later point, this data is shipped

to a central repository, which scientists then connect to and execute large aggregate and subset queries to

facilitate their data exploration. The DataCutter [4] system exemplifies current research in this area: it

focuses on providing an efficient platform in which scientists can collect data from multiple repositories and

then efficiently aggregate and subset that data across multiple dimensions. This model is very different from

the interactive sensor processing environment we envision.

7.4 Continuous Queries

Existing work on continuous queries provides some interesting techniques for simultaneously processing

many queries over a variety of data sources. These systems provide an important starting point for our work

but are not directly applicable as they are focused on continuous queries over traditional database sources or

web sites and thus don’t deal with issues specific to streaming sensor data.

In the OpenCQ system [17], continuous queries are very similar to SQL triggers, except that they are

more general with respect to the tables and columns they can be defined over and are geared toward re-

evaluation of expressions as data sources change rather than dependency maintenance. In OpenCQ, contin-

uous queries are four-element tuples consisting of a SQL-style query, a trigger-condition, a start-condition,

and an end-condition. Some effort is taken to combine related predicates to eliminate redundant evaluations,

but the NiagaraCQ system, discussed next, presents a more robust solution to this problem.

The NiagaraCQ project [6] is also focused on providing continuous queries over changing web sites.

Users install queries, which consist of an XML-QL [10] query as well as a duration and re-evaluation

interval. Queries are evaluated periodically based on whether the sites they query have changed since the

query was last run. The system is geared toward running very large numbers of queries over diverse data

sources. The system is able to perform well by grouping similar queries, extracting the common portion

of those queries, and then evaluating the common portion only once. We expect that this technique will

apply to streaming sensor queries as well: there will be many queries over a particular stream which share

common subexpressions.

The XFilter system [1] is similar to the NiagaraCQ system in that it queries a database of XML doc-

uments for the subset which match some filter-profile expressed in the XPath [7] language. It is comple-

mentary to the Niagara system in that it optimizes queries by indexing the set of profiles based on the filter

conditions which appear within those profiles rather than by combining profiles which share common subex-

pressions. Thus, when a new XML document arrives in the system, each of its tags is matched against this

DRAFT, March 2, 2001. Do Not Distribute. 24

filter-condition index to rapidly determine which profiles have conditions that need to be checked against

the document.

7.5 Stream Processing

The dQUOB system [19] is designed for very-high throughput filtration of data streams: it selects tuples

which meet some set of query conditions and drops the remainder of the tuples. This is achieved primarily

through two techniques: First, queries are compiled in quoblets – essentially, INGRES [25] style precom-

piled queries. Second, ordering of query predicates is done intelligently: either by running more selective

predicates first, less costly predicates first, or some combination thereof. This system provides some inter-

esting techniques for dealing with streams of data, but does not handle architecture or power issues in any

way.

8 Future Work and Conclusions

As wireless communications technology and embedded processing technologies converge to allow the large

scale deployment of tiny, low-power, radio-driven sensors, efficient techniques for querying the data they

collect will be crucial. These techniques must not only be efficient, but also sensitive to the power limitations

of the sensors.

Our sensor-stream processing solution satisfies these requirements via two techniques: First, the Fjords

architecture combines proxies, non-blocking operators and conventional query plans. This combination

allows streaming data to be pushed through operators that pull from traditional data sources, efficiently

merging streams and local data as samples flow past. Second, sensor-proxies serve as mediators between

sensors and query plans, using sensors to facilitate query processing while being sensitive to their power,

processor, and communications limitations.

There are a number of interesting areas for future work. In particular, it would be useful to integrate

tools for combining common sub-parts of user queries. We believe that many users will formulate similar

sensor queries, and tools for rapidly evaluating similar classes of queries are needed. The XFilter[1] and

NiagaraCQ[6] projects both offer techniques for extracting and evaluating common parts of user queries.

Secondly, Fjords are currently non-adaptive; that is, they do not modify the order of joins in the face of

sensor delays or intermittent failures. We plan to explore the use of adaptive query operators such as Eddy[3]

and XJoin[26] in Fjords. We believe that these operators can serve an important role in integrating non-

streaming and streaming data by buffering streaming sources and masking latencies in traditional sources.

The solutions we have presented are an important part of the Telegraph Query Processing System, which

seeks to extend traditional query processing capabilities to a variety of non-traditional data sources. Our

sensor-stream processing techniques integrate sensors into Telegraph in a seamless and efficient manner.

DRAFT, March 2, 2001. Do Not Distribute. 25

References
[1] M. Altinel and M. Franklin. Efficient filtering of XML documents for selective dissemination of information. In International

Conference on Very Large Data Bases, September 2000.
[2] Atmel Corporation. Atmel 8bit AVR microcontroller datasheet. http://www.atmel.com/atmel/acrobat/doc1041.pdf.
[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query processing. In Proceedings of the ACM SIGMOD, pages

261–272, Dallas, TX, May 2000.
[4] M. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz. DataCutter: Middleware for filtering very large scientific datasets

on archival storage systems. In Proceedings of the 2000 Mass Storage Systems Conference. IEEE Computer Society Press,
March 2000.

[5] California Highway Patrol. Traffic incident information page. http://cad.chp.ca.gov/.
[6] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system for internet databases. In

Proceedings of the ACM SIGMOD, 2000.
[7] J. Clark and S. DeRose. XML path language (XPath) version 1.0, November 1999. http://www.w3.org/TR/xpath.
[8] B. Coifman. Vehicle reidentification and travel time measurement using the existing loop detector infrastructure. In Trans-

portation Research Board, 1998.
[9] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. H. Katz. An architecture for a secure service discovery service. In

Proceedings of Fifth ACM Conf. on Mobile Computing and Networking (MOBICOM), Seattle, WA, 1999. ACM.
[10] A. Deutsch, M. Fernandez, D. Floresc, A. L. , and D. Suciu. XML-QL: A query language for XML, 1998.

http://www.w3.org/TR/NOTE-xml-ql.
[11] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman, T. Roth, and P. J. Haas. Interactive data analysis with

CONTROL. IEEE Computer, 32(8), August 1999.
[12] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A. Deshpande, K. Hildrum, S. Madden, V. Raman, and M. Shah.

Adaptive query processing: Technology in evolution. IEEE Data Engineering Bulletin, 23(2):7–18, 2000.
[13] J. Hill, R. Szewczyk, A. Woo, S. Hollar, and D. C. K. Pister. System architecture directions for networked sensors. In Pro-

ceedings of the 9th International Conference on Architectural Support for Programming Languages and Operating Systems,
November 2000.

[14] C. Intanagonwiwat, R. Govindan, , and D. Estrin. Directed diffusion: A scalable and robust communication paradigm
for sensor networks. In In Proceedings of the Sixth Annual International Conference on Mobile Computing and Networks
(MobiCOM 2000), Boston, MA, August 2000.

[15] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld. An adaptive query execution system for data integration. In
Proceedings of the ACM SIGMOD, 1999.

[16] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Mobile networking for smart dust. In Proceedings of Fifth ACM Conf. on Mobile
Computing and Networking (MOBICOM)), Seattle, WA, August 1999.

[17] L. Liu, C. Pu, and W. Tang. Continual queries for internet-scale event-driven information delivery. IEEE Knowledge and
Data Engineering, 1999. Special Issue on Web Technology.

[18] P.Bonnet, J.Gehrke, and P.Seshadri. Towards sensor database systems. In 2nd International Conference on Mobile Data
Management, Hong Kong, January 2001.

[19] B. Plale and K. Schwan. dQUOB: Managing large data flows using dynamic embedded queries. In Proceedings of High
Performance Distributed Computing, 2000.

[20] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-support system. In Proc. of the Sixth Annual
ACM International Conference on Mobile Computing and Networking (MOBICOM), August 2000.

[21] RFM Corporation. RFM TR1000 Datasheet. http://www.rfm.com/products/data/tr1000.pdf.
[22] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access path selection in a relational database management

system. pages 23–34, Boston, MA, 1979.
[23] P. Seshadri, M. Livny, and R. Ramakrishnan. The design and implementation of a sequence database systems. In International

Conference on Very Large Data Bases, Mumbai, India, September 1996.
[24] J. Shanmugasundaram, K. Tufte, D. DeWitt, J. Naughton, and D. Maier. Architecting a network query engine for producing

partial results. In Workshop on the Web and Databases (WebDB), May 2000.
[25] M. Stonebraker, E. Wong, and P. Kreps. The design and implementation of INGRES. ACM Transactions on Database

Systems, 1(3):189–222, September 1976.
[26] T. Urhan and M. Franklin. XJoin: A reactively-scheduled pipelined join operator. IEEE Data Engineering Bulletin, pages

27–33, 2000 2000.
[27] C. Waldspurger and W. Weihl. Lottery scheduling: Flexible proportional-share resource management. In Proceedings of the

Symposium on Operating Systems Design and Implementation, pages 1–12, Monterey CA (USA), 1994.
[28] M. Weiser. Some computer science problems in ubiquitous computing. Communications of the ACM, July 1993.
[29] M. Welsh, S. D. Gribble, E. A. Brewer, and D. Culler. A design framework for highly concurrent systems. Technical Report

UCB/CSD-00-1108, UC Berkeley, April 2000. http://www.cs.berkeley.edu/ mdw/papers/events.pdf.
[30] A. Wilschut and P. Apers. Dataflow query execution in a parallel main-memory environment. In Proc. of the International

Conference on Parallel and Distributed Information Systems (PDIS, pages 68–77, December 1991.
[31] O. Wolfson, A. P. Sistla, B. Xu, J. Zhou, and S. Chamberlain. DOMINO: Databases fOr MovINg Objects tracking. In

SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data, pages 547–549, Philadelphia,
PA, June 1999. ACM Press.

