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Abstract Declarative queries are proving to be an attractive paradigm for inter-
acting with networks of wireless sensors. The metaphor that “the sensornet is a
database” is problematic, however, because sensors do not exhaustively represent
the data in the real world. In order to map the raw sensor readings onto physical
reality, amodelof that reality is required to complement the readings. In this ar-
ticle, we enrich interactive sensor querying with statistical modeling techniques.
We demonstrate that such models can help provide answers that are both more
meaningful, and, by introducing approximations with probabilistic confidences,
significantly more efficient to compute in both time and energy. Utilizing the com-
bination of a model and live data acquisition raises the challenging optimization
problem of selecting the best sensor readings to acquire, balancing the increase in
the confidence of our answer against the communication and data acquisition costs
in the network. We describe an exponential time algorithm for finding the optimal
solution to this optimization problem, and a polynomial-time heuristic for identi-
fying solutions that perform well in practice. We evaluate our approach on several
real-world sensor-network data sets, taking into account the real measured data
and communication quality, demonstrating that our model-based approach pro-
vides a high-fidelity representation of the real phenomena and leads to significant
performance gains versus traditional data acquisition techniques.

? We thank Intel Corporation and Intel Research – Berkeley for supporting the authors’
during much of this work. This article includes and extends results that were previously
published in VLDB 2004 [18], and combines these techniques with the conditional planning
approach published in ICDE 2005 [17].
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1 Introduction

Database technologies are beginning to have a significant impact in the emerg-
ing area of wireless sensor networks (sensornets). The sensornet community has
embraced declarative queries as a key programming paradigm for large sets of sen-
sors. This is seen in academia in the calls for papers for leading conferences and
workshops in the sensornet area [2, 1], and in a number of prior research publica-
tions (e.g., [39, 56, 35]). In the emerging industrial arena, one of the leading ven-
dors (Crossbow) is bundling a query processor with their devices, and providing
query processor training as part of their customer support. The area of sensornet
querying represents an unusual opportunity for database researchers to apply their
expertise in a new area of computer systems.

Declarative querying has proved powerful in allowing programmers to “task”
an entire network of sensor nodes, rather than requiring them to worry about
programming individual nodes. However, the metaphor that “the sensornet is a
database” has proven misleading. Databases are typically treated as complete, au-
thoritative sources of information; the job of a database query engine has tradition-
ally been to answer a query “correctly” based upon all the available data. Applying
this mindset to sensornets results in two problems:

1. Misrepresentations of data: In the sensornet environment, it is impossible
to gatherall the relevant data. The physically observable world consists of a
set of continuous phenomena in both time and space, so the set of relevant
data is in principle infinite. Sensing technologies acquiresamplesof physical
phenomena at discrete points in time and space, but the data acquired by the
sensornet is unlikely to be a random (i.i.d.) sample of physical processes, for a
number of reasons (non-uniform placement of sensors in space, faulty sensors,
high packet loss rates, etc). So a straightforward interpretation of the sensornet
readings as a “database” may not be a reliable representation of the real world.

2. Inefficient approximate queries: Since a sensornet cannot acquire all possi-
ble data, any readings from a sensornet are “approximate”, in the sense that
they only represent the true state of the world at the discrete instants and loca-
tions where samples were acquired. However, the leading approaches to query
processing in sensornets [56, 39] follow a completist’s approach, acquiring as
much data as possible from the environment at a given point in time, even
whenmost of that data provides little benefit in approximate answer quality.
We show examples where query execution cost – in both time and power con-
sumption – can be orders of magnitude more than is appropriate for a reason-
ably reliable answer.

1.1 Our contribution

In this article, we propose to compensate for both of these deficiencies by incorpo-
rating statisticalmodelsof real-world processes into a sensornet query processing
architecture. Models can help provide more robust interpretations of sensor read-
ings: for example, they can account for biases in spatial sampling, can help identify
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sensors that are providing faulty data, and can extrapolate the values of missing
sensors or sensor readings at geographic locations where sensors are no longer op-
erational. Furthermore, models provide a framework for optimizing the acquisition
of sensor readings: sensors should be used to acquire data only when the model
itself is not sufficiently rich to answer the query with acceptable confidence.

Underneath this architectural shift in sensornet querying, we define and address
a key optimization problem: given a query and a model, choose a data acquisition
plan for the sensornet to best refine the query answer. This optimization problem
is complicated by two forms of dependencies: one in the statisticalbenefitsof
acquiring a reading, the other in the systemcostsassociated with wireless sensor
systems.

First, a non-trivial statistical model will capture correlations among sensors:
for example, the temperatures of geographically proximate sensors are likely to be
correlated. Given such a model, the benefit of a single sensor reading can be used
to improve estimates of other readings: the temperature at one sensor node is likely
to improve the confidence of model-driven estimates for nearby nodes.

The second form of dependency hinges on the connectivity of the wireless
sensor network. If a sensor nodefar is not within radio range of the query source,
then one cannot acquire a reading fromfar without forwarding the request/result
pair through another nodenear. This presents not only a non-uniform cost model
for acquiring readings, but one with dependencies: due to multi-hop networking,
the acquisition cost fornear will be much lower if one has already chosen to
acquire data fromfar by routing throughnear.

In this paper, we propose and evaluate two classes of observation plans: (1)
subsetobservation plans, where the query processor specifies a subset of the at-
tributes to be observed, along with atraversal routeto be used for acquiring the
values of these attributes, and (2)branching (conditional)observation plans, where
the set of attributes to be observed next in the traversal depends on the actual
values of the attributes observed thus far. We develop and evaluate algorithms to
efficiently choose both classes of observation plans.

To explore the benefits of the model-based querying approach we propose,
we have built a prototype called BBQ1 that uses a specific model based on time-
varying multivariate Gaussians. We describe how our generic model-based archi-
tecture and querying techniques are specifically applied in BBQ. We also present
encouraging results on real-world sensornet trace data, demonstrating the advan-
tages that models offer for queries over sensor networks.

2 Overview of approach

In this section, we provide an overview of our basic architecture and approach,
as well as a summary of BBQ. Our architecture consists of a declarative query
processing engine that uses a probabilistic model to answer questions about the
current state of the sensor network. We denote a model as aprobability density

1 BBQ is short for Barbie-Q: A Tiny-Model Query System
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function (pdf), p(X1, X2, . . . , Xn), assigning a probability for each possible as-
signment to the attributesX1, . . . , Xn, where eachXi is an attribute at a particular
sensor (e.g., temperature on sensing node 5, voltage on sensing node 12). Typically,
there is one such attribute per sensor type per sensing node. This model can also
incorporatehidden variables(i.e., variables that are not directly observable) that
indicate, for example, whether a sensor is giving faulty values. Such models can
be learned from historical data using standard algorithms (e.g., [41]).

Users query for information about the values of particular attributes or in cer-
tain regions of the network, much as they would in a traditional SQL database.
Unlike database queries, however, sensornet queries request real-time information
about the environment, rather than information about a stored collection of data.
The model is used to estimate sensor readings in the current time period; these es-
timates form the answer to the query. In the process of generating these estimates,
the model may interrogate the sensor network for updated readings that will help
to refine estimates for which the model’s uncertainty is high. As time passes, the
model may also update its estimates of sensor values, to reflect expected temporal
changes in the data.

In BBQ, we use a specific model based on time-varying multivariate Gaus-
sians; we describe this model below. We emphasize, however, that our approach
is general with respect to the model, and that more or less complex models can
be used instead. New models require no changes to the query processor and can
reuse code that interfaces with and acquires particular readings from the sensor
network. The main difference occurs in the algorithms required to solve the proba-
bilistic inference tasks described in Section 3. These algorithms have been widely
developed for many practical models (e.g., [41]).

Figure 1 illustrates our basic architecture through an example. Users submit
SQL queries to the database, which are translated into probabilistic computations
over the model (Section 3). The queries include error tolerances and target con-
fidence bounds that specify how much uncertainty the user is willing to tolerate.
Such bounds will be intuitive to many scientific and technical users, as they are the
same as the confidence bounds used for reporting results in most scientific fields
(c.f., the graph-representation shown in the upper right of Figure 1). In this exam-
ple, the user is interested in estimates of the value of sensor readings for nodes
numbered 1 through 8, within .1 degrees C of the actual temperature reading with
95% confidence. Based on the model, the system decides that the most efficient
way to answer the query with the requested confidence is to read battery voltage
from sensors 1 and 2 and temperature from sensor 4. Based on knowledge of the
sensor network topology, it generates anobservation planthat acquires samples in
this order, and sends the plan into the network, where the appropriate readings are
collected.

Notice that the model in this example chooses to observe the voltage at some
nodes despite the fact that the user’s query was over temperature. This happens for
two reasons:

1. Correlations in Value: Temperature and voltage are highly correlated, as il-
lustrated by Figure 2 which shows the temperature and voltage readings for
two days of sensor readings from a pair of Berkeley Mica2 Motes [14] that we
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Fig. 1 Our architecture for model-based querying in sensor networks.

deployed in the Intel Research Lab in Berkeley, California. Note how voltage
tracks temperature, and how temperature variations across motes, even though
of noticeably different magnitudes, are very similar. The relationship between
temperature and voltage is due to the fact that, for many types of batteries,
as they heat or cool, their voltages vary significantly (by as much as 1% per
degree). The voltages may also decrease as the sensor nodes consume energy
from the batteries, but the time scale at which that happens is much larger
than the time scale of temperature variations, and so the model can use voltage
changes to infer temperature changes.

2. Cost Differential: Depending on the specific type of temperature sensor used,
it may be much cheaper to sample the voltage than to read the tempera-
ture. For example, on sensor boards from Crossbow Corporation for Berkeley
Motes [14], the temperature sensor requires several orders of magnitude more
energy to sample as simply reading battery voltage (see Table 1).

One of the important properties of many probabilistic models (including the one
used in BBQ) is that they can capture correlations between different attributes.
We will see how we can exploit such correlations during optimization to generate
efficient query plans in Section 4.
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Fig. 2 Trace of voltage and temperature readings over a two day period from a single mote-
based sensor. Notice the close correlation between the two attributes.

Sensor Energy Per
Sample (@3V), mJ

Solar Radiation [55] .525
Barometric Pressure [33] 0.003
Humidity and Temperature[52] 0.5
Voltage 0.00009

Table 1 Summary of Power Requirements of Crossbow MTS400 Sensorboard (From [38]).
Certain sensors, such as solar radiation and humidity (which includes a temperature sensor)
require about a second per sample, explaining their high per-sample energy cost.

2.1 Confidence intervals and correlation models

If the user in Figure 1 requested 100% confidence and no error tolerance, our
model-based approach would most likely require us to interrogate every sensor.
The returned result may still include some uncertainty, as the model may not have
readings from particular sensors or locations at some points in time (due to sen-
sor or communications failures, or lack of sensor instrumentation at a particular
location). The confidence intervals computed from our probabilistic model after
incorporating the available sensor values provide considerably more information
than traditional sensor network systems like TinyDB [40] and Cougar [56] provide
in this setting. With those systems, the user would simply get no data regarding
those missing times and locations.

Conversely, if the user requested very wide confidence bounds, our model-
based approach may be able to answer the query without acquiring any additional
data from the network. In fact, in our experiments with BBQ on several real-world
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data sets, we see a number of cases where strong correlations between sensors dur-
ing certain times of the day mean that even queries with relatively tight confidence
bounds can be answered with a very small number of sensor observations. In many
cases, these tight confidences can be provideddespite the fact that sensor readings
have changed significantly. This is because known correlations between sensors
make it possible to predict these changes: for example, in Figure 2, it is clear that
the temperature on the two sensors is correlated given the time of day. During
the daytime (e.g., readings 600-1200 and 2600-3400), sensor 25, which is placed
near a window, is consistently hotter than sensor 1, which is in the center of our
lab. A good model will be able to infer, with high confidence that, during daytime
hours, sensor readings on sensor 25 are 1-2 degrees hotter than those at sensor 1
without actually observing sensor 25. Again, this is in contrast to existing sensor
network querying systems, where sensors are continuously sampled and readings
are always reported whenever small absolute changes happen.

Typically in probabilistic modeling, we pick a class of models, and use learn-
ing techniques to pick the best model in the class. The problem of selecting the
right model class has been widely studied (e.g., [41]), but can be difficult in some
applications. Before presenting the specific model class used in BBQ, we note that,
in general, a probabilistic model is only as good at prediction as the data used to
train it. Thus, it may be the case that the temperature between sensors 1 and 25
would not show the same relationship during a different season of the year, or in a
different climate – in fact, one might expect that when the outside temperature is
very cold, sensor 25 will read less than sensor 1 during the day, just as it does dur-
ing the night time. Thus, for models to perform accurate predictions they must be
trained in the kind of environment where they will be used. That does not mean,
however, that well-trained models cannot deal with changing relationships over
time; in fact, the model we use in BBQ uses different correlation data depend-
ing on time of day. Extending it to handle seasonal variations, for example, is a
straightforward extension of the techniques we use for handling variations across
hours of the day.

2.2 BBQ

In BBQ, we use a specific probabilistic model based on time-varying multivariate
Gaussians. A multivariate Gaussian (hereafter, just Gaussian) is the natural ex-
tension of the familiar unidimensional normal probability density function (pdf),
known as the “bell curve”. Just as with its 1-dimensional counterpart, a Gaussian
pdf overd attributes,X1, . . . , Xd can be expressed as a function of two parameters:
a length-d vector of means,µ, and ad × d matrix of covariances,Σ. Figure 3(A)
shows a three-dimensional rendering of a Gaussian over two attributes,X1 and
X2; the z axis represents thejoint densitythatX2 = x andX1 = y. Figure 3(B)
shows a contour plot representation of the same Gaussian, where each circle rep-
resents a probability density contour (corresponding to the height of the plot in
(A)).

Intuitively, µ is the point at the center of this probability distribution, andΣ
represents the spread of the distribution. Theith element along the diagonal ofΣ is
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simply the variance ofXi. Each off-diagonal elementΣ[i, j], i 6= j represents the
covariance between attributesXi andXj . Covariance is a measure of correlation
between a pair of attributes. A high absolute covariance means that the attributes
are strongly correlated: knowledge of one closely constrains the value of the other.
The Gaussians shown in Figure 3(A) and (B) have a high covariance betweenX1

andX2. Notice that the contours are elliptical such that knowledge of one variable
constrains the value of the other to a narrow probability band.

In BBQ, we use historical data to construct the initial representation of this
pdf p. In the implementation described in this article, we obtained such data us-
ing TinyDB (a traditional sensor network querying system)2. Once our initialp
is constructed, we can answer queries using the model, updating it as new ob-
servations are obtained from the sensor network, and as time passes. We ex-
plain the details of how updates are done in Section 3.2, but illustrate it graph-
ically with our 2-dimensional Gaussian in Figures 3(B) - 3(D). Suppose that
we have an initial Gaussian shown in Figure 3(B) and we choose to observe
the variableX1; given the resulting single value ofX1 = x, the points along
the line{(x,X2) | ∀X2 ∈ [−∞,∞]} conveniently form an (unnormalized) one-
dimensional Gaussian. After re-normalizing these points (to make the area under
the curve equal 1.0), we can derive a new pdf representingp(X2 | X1 = x), which
is shown in 3(C). Note that the mean ofX2 given the value ofX1 is not the same
as the prior mean ofX2 in 3(B). Then, after some time has passed, our belief about
X1’s value will be “spread out”, and we will again have a Gaussian over two at-
tributes, although both the mean and variance may have shifted from their initial
values, as shown in Figure 3(D).

2.3 Supported queries

Answering queries probabilistically based on a distribution (e.g., the Gaussian rep-
resentation described above) is conceptually straightforward. Suppose, for exam-
ple, that a query asks for anε approximation to the value of a set of attributes,
with confidence at least1− δ. We can use our pdf to compute the expected value,
µi, of each attribute in the query. These will be our reported values. We can then
use the pdf again to compute the probability thatXi is within ε from the mean,
P (Xi ∈ [µi− ε, µi + ε]). If all of these probabilities meet or exceed the user spec-
ified confidence threshold, then the requested readings can be directly reported
as the meansµi. If the model’s confidence is too low, then we require additional
readings before answering the query.

Choosing which readings to observe at this point is an optimization problem:
the goal is to pick the best set of attributes to observe, minimizing the cost of obser-
vation required to bring the model’s confidence up to the user specified threshold
for all of the query predicates. We discuss this optimization problem in more detail
in Section 4.

2 Though these initial observations do consume some energy up-front, we will show that
the long-run energy savings obtained from using a model will be much more significant.
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Fig. 3 Example of Gaussians: (a) 3D plot of a 2D Gaussian with high covariance; (b) the
same Gaussian viewed as a contour plot; (c) the resulting Gaussian overX2 after a particular
value ofX1 has been observed; finally, (d) shows how, as uncertainty aboutX1 increases
from the time we last observed it, we again have a 2D Gaussian with a lower variance and
shifted mean.

In Section 3, we show how our query and optimization engine are used in
BBQ to answer a number of SQL queries, including (i) simple selection queries
requesting the value of one or more sensors, or the value of all sensors in a given
geographic region, (ii) whether or not a predicate over one or more sensor readings
is true, and (iii) grouped aggregates such as AVERAGE.

For the purposes of this article, we focus on multiple one-shot queries over
the current state of the network, rather than continuous queries. We can provide
simple continuous query functionality by issuing a one-shot query at regular time
intervals. In our experimental section, we compare this approach to existing con-
tinuous query systems for sensor networks (like TinyDB). We also discuss how
knowledge of a standing, continuous query could be used to further optimize our
performance in Section 7.

In this article, there are certain types of queries which we do not address. For
example, BBQ is not designed for outlier detection – that is, it will not immedi-
ately detect when a single sensor is reading something that is very far from its
expected value or from the value of neighbors it has been correlated with in the
past. We suggest ways in which our approach can be amended to handle outliers
in Section 7.
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2.4 Networking model and observation plan format

Our initial implementation of BBQ focuses on static sensor networks, such as
those deployed for building and habitat monitoring. For this reason, we assume
that network topologies change relatively slowly. We capture network topology
information when collecting data by including, for each sensor, a vector of link
quality estimates for neighboring sensor nodes. We use this topology information
when constructing query plans by assuming that nodes that were previously con-
nected will still be in the near future. When executing a plan, if we observe that
a particular link is not available (e.g., because one of the sensors has failed), we
update our topology model accordingly.We can continue to collect new topology
information as we query the network, so that new links will also become available.
This approach will be effective if the topology is relatively stable; highly dynamic
topologies will need more sophisticated techniques, which is a problem we briefly
discuss in Section 7.

In BBQ, observation plans consist of a list of sensor nodes to visit, and, at each
of these nodes, a (possibly empty) list of attributes that need to be observed at that
node. The possibility of visiting a node but observing nothing is included to allow
plans to observe portions of the network that are separated by multiple radio hops.
When conditional observation plans are used, a plan may also contain additional
branching information that lists the plans to be used for evaluating the rest of the
query for different observed values of the attributes. We require that plans begin
and end at sensor id 0 (theroot), which we assume to be the node that interfaces the
query processor to the sensor network. We note that this approach to routing is sub-
stantially different than approaches used in other sensor network databases (e.g.,
Cougar [56] and TinyDB [40]) that use (scoped) flooding approaches to dissemi-
nate queries throughout a network. We adopted a tour-based approach because it
allows us to initiate data collection from the root and visit only a small, predefined
subset of the nodes.

2.5 Cost model

During plan generation and optimization, we need to be able to compare the rel-
ative costs of executing different plans in the network. As energy is the primary
concern in battery-powered sensornets [32, 49], our goal is to pick plans of mini-
mum energy cost. The primary contributors to energy cost are communication and
data acquisition from sensors (CPU overheads beyond what is required when ac-
quiring and sending data are small, as there is no significant processing done on
the nodes in our setting).

Our cost model uses numbers obtained from the data sheets of sensors and the
radio used on Mica2 motes with a Crossbow MTS400 [14] environmental sensor
board. For the purposes of our model, we assume that the sender and receiver are
well synchronized, so that a listening sensor turns on its radio just as a sending
node begins transmitting3. On current generation motes, the time required to send

3 In practice [48], this is done by having the receiver periodically sample the radio, listen-
ing for a preamble signal that indicates a sender is about to begin transmission; when this
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a packet is about 27 ms. The ChipCon CC1000 radio on motes uses about 15 mW
of energy in both send and receive modes, meaning that both sender and receiver
consume about .4 mJ of energy. Table 1 summarizes the energy costs of acquiring
readings from various sensors available for motes. In this article, we primarily
focus on temperature readings, though we briefly discuss other attributes as well
in Section 6. Assuming we are acquiring temperature readings (which cost .5 J per
sample), we compute the cost of a plan that visitss nodes and acquiresa readings
to be(.4× 2)× s+.5× a if there are no lost packets. In Section 4.1, we generalize
this idea, and consider lossy communication. Note that this cost treats the entire
network as a shared resource in which power needs to be conserved equivalently
on each mote. More sophisticated cost models that take into account the relative
importance of nodes close to the root could be used, but an exploration of such
cost models is not needed to demonstrate the utility of our approach.

3 Model-based querying

As described above, the central element in our approach is the use of a probabilistic
model to answer queries about the attributes in a sensor network. This section
focuses on a few specific queries: range predicates, attribute-value estimates, and
standard aggregates. We provide a review of the standard methodology required
to use a probabilistic model to answer these queries. This probabilistic model can
answer many other significantly more complex queries as well; we outline some
of these directions in Section 7.

3.1 Probabilistic queries

A probability density function(pdf), or prior density, p(X1, . . . , Xn) assigns a
probability for each joint valuex1, . . . , xn for the attributesX1, . . . , Xn.

Range queries:We begin by considering range queries that ask if an attribute
Xi is in the range[ai, bi]. Typically, we would need to query the sensor network
to obtain the value of the attribute and then test whether the query is true or false.
Using a probabilistic model, we can compute the probabilityP (Xi ∈ [ai, bi]).
If this probability is very high, we are confident that the predicateXi ∈ [ai, bi] is
true. Analogously, if the probability is very low, we are confident that the predicate
is false. Otherwise, we may not have enough information to answer this query
with sufficient confidence and may need to acquire more data from the sensor
network. The probabilityP (Xi ∈ [ai, bi]) can be computed in two steps: First, we
marginalize, or project, the pdfp(X1, . . . , Xn) to a density over only attributeXi:

p(xi) =
∫

p(x1, . . . , xn)dx1 . . . dxi−1dxi+1 . . . dxn.

preamble is heard, it begins listening continuously. Though this periodic radio sampling
uses some energy, it is small, because the sampling duty cycle can be 1% or less (and is an
overhead paid by any application that uses the radio).
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Marginalization gives us the pdf over onlyXi. We can then computeP (Xi ∈
[ai, bi]) simply by:

P (Xi ∈ [ai, bi]) =
∫ bi

ai

p(xi)dxi. (1)

Range queries over multiple attributes can be answered by marginalizing the
joint pdf to that set of attributes. Thus, we can use the joint probability density
p(X1, . . . , Xn) to provide probabilistic answers to any range query. If the user
specifies a confidence level1 − δ, for δ ∈ [0, 1], we can answer the query if this
confidence is eitherP (Xi ∈ [ai, bi]) > 1−δ or P (Xi ∈ [ai, bi]) < δ. However, in
some cases, the computed confidences may be low compared to the ones required
by the query, and we need to make new observations, that is, to acquire new sensor
readings.

Suppose that we observe the value of attributeXj to bexj , we can now use
Bayes’ rule toconditionour joint pdfp(X1, . . . , Xn) on this value4, obtaining:

p(X1, . . . , Xj−1, Xj+1, . . . , Xn | xj) =
p(X1, . . . , Xj−1, xj , Xj+1, . . . , Xn)

p(xj)
.

Theconditional probability density functionp(X1, . . . , Xj−1, Xj+1, . . . , Xn |
xj), also referred as theposterior densitygiven the observationxj , will usually
lead to a more confident estimate of the probability ranges. Using marginalization,
we can computeP (Xi ∈ [ai, bi] | xj), which is often more certain than the prior
probabilityP (Xi ∈ [ai, bi]). In general, we will make a set of observationso, and,
after conditioning on these observations, obtainp(X | o), the posterior probability
of our set of attributesX giveno.

Example 3.1 In BBQ, the pdf is represented by a multivariate Gaussian with
mean vectorµ and covariance matrixΣ. In Gaussians, marginalization is very
simple. If we want to marginalize the pdf to a subsetY of the attributes, we simply
select the entries inµ andΣ corresponding to these attributes, and drop the other
entries obtaining a lower dimensional mean vectorµY and covariance matrix
ΣYY.

For a Gaussian, there is no closed-form solution for Equation (1). However,
this integration problem is very well understood, called theerror function(erf),
with many well-known, simple approximations.

Interestingly, if we condition a Gaussian on the value of some attributes, the
resulting pdf is also a Gaussian. The mean and covariance matrix of this new
Gaussian can be computed by simple matrix operations. Suppose that we observe
valueo for attributesO, the meanµY|o and covariance matrixΣY|o of the pdf

4 The expressionp(x|y) is read “the probability ofx given y”, and represents the pdf
of variablex given a particular value ofy. Bayes’ rule allows conditional probabilities to
be computed in scenarios where we only have data on the inverse conditional probability:
p(x|y) = p(y|x)p(x)

p(y)
.
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p(Y | o) over the remaining attributes are given by:

µY|o = µY + ΣYOΣ−1
OO(o− µO),

ΣY|o = ΣYY −ΣYOΣ−1
OOΣOY,

(2)

whereΣYO denotes the matrix formed by selecting the rowsY and the columnsO
from the original covariance matrixΣ. Note that the posterior covariance matrix
ΣY|o does not depend on the actual observed valueo. We thus denote this matrix
byΣY|O. In BBQ, by using Gaussians, we can thus compute all of the operations
required to answer our queries by performing only basic matrix operations.ut

Value queries:In addition to range queries, a probability density function can,
of course, be used to answer many other query types. For example, if the user is
interested in the value of a particular attributeXi, we can answer this query by
using the posterior pdf to compute the meanx̄i value ofXi, given the observations
o:

x̄i =
∫

xi p(xi | o)dxi.

We can additionally provide confidence intervals on this estimate of the value of
the attribute: for a given error boundε > 0, the confidence is simply given by
P (Xi ∈ [x̄i − ε, x̄i + ε] | o), which can be computed as in the range queries in
Equation (1). If this confidence is greater than the user specified value1− δ, then
we can provide a probably approximately correct value for the attribute, without
observing it.

AVERAGE aggregates:Average queries can be answered in a similar fashion,
by defining an appropriate pdf. Suppose that we are interested in the average value
of a set of attributesA. For example, if we are interested in the average temperature
in a spatial region, we can defineA to be the set of sensors in this region. We can
now define a random variableY to represent this average byY = (

∑
i∈A Xi)/|A|.

The pdf forY is simply given by appropriate marginalization of the joint pdf over
the attributes inA:

p(Y = y | o) =∫
p(x1, . . . , xn | o) 1

[(∑
i∈A

xi/|A|

)
= y

]
dx1 . . . dxn,

where1[·] is the indicator function.5 Oncep(Y = y | o) is defined, we can answer
an average query by simply defining a value query for the new random variableY
as above. We can also compute probabilistic answers to more complex aggregation
queries. For example, if the user wants the average value of the attributes inA that
have value greater thanc, we can define a random variableZ:

Z =
∑

i∈A Xi1(Xi > c)∑
i∈A 1(Xi > c)

,

5 The indicator function translates a Boolean predicate into the arithmetic value 1 (if the
predicate is true) and 0 (if false).
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where0
0 is defined to be0. The pdf ofZ is given by:

p(Z = z | o) =∫
p(x1, . . . , xn | o) 1

[(∑
i∈A,xi>c xi∑
i∈A,xi>c 1

)
= z

]
dx1 . . . dxn.

In general, this inference problem,i.e., computing these integrals, does not have a
closed-form solution, and numerical integration techniques may be required.

Example 3.2 BBQ focuses on Gaussians. In this case, each posterior meanx̄i can
be obtained directly from our mean vector by using the conditioning rule described
in Example 3.1. Interestingly, the sum of Gaussian random variables is also Gaus-
sian. Thus, if we define an AVERAGE queryY = (

∑
i∈A Xi)/|A|, then the pdf for

Y is a Gaussian. All we need now is the variance ofY , which can be computed in
closed-form from those of eachXi by:

E[(Y − µY )2] = E[(
∑

i∈A Xi − µi)2/|A|2],
= 1

|A|2
(∑

i∈A E[(Xi − µi)2]
+2
∑

i∈A
∑

j∈A,j<i

E[(Xi − µi)(Xj − µj)]) .

Thus, the variance ofY is given by a weighted sum of the variances of eachXi,
plus the covariances betweenXi andXj , all of which can be directly read off the
covariance matrixΣ. Therefore, we can answer an AVERAGE query over a subset
of the attributesA in closed-form, using the same procedure as value queries. For
the more general queries that depend on the actual value of the attributes, even
with Gaussians, we require a numerical integration procedure.ut

3.2 Dynamic models

Thus far, we have focused on a single static probability density function over the
attributes. This distribution representsspatialcorrelation in our sensor network de-
ployment. However, many real-world systems include attributes that evolve over
time. In our deployment, the temperatures have both temporal and spatial corre-
lations. Thus, the temperature values observed earlier in time should help us esti-
mate the temperature later in time. Adynamic probabilistic modelcan represent
such temporal correlations.

In particular, for each (discrete) time indext, we should estimate a pdf
p(Xt

1, . . . , X
t
n | o1...t) that assigns a probability for each joint assignment to the

attributes at timet, giveno1...t, all observations made up to timet. A dynamic
model describes the evolution of this system over time, telling us how to compute
p(Xt+1

1 , . . . , Xt+1
n | o1...t) from p(Xt

1, . . . , X
t
n | o1...t). Thus, we can use all

measurements made up to timet to improve our estimate of the pdf at timet + 1.
For simplicity, we restrict our presentation toMarkovianmodels, where given

the value ofall attributes at timet, the value of the attributes at timet + 1 are
independent of those for any time earlier thant. This assumption leads to a very
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simple, yet often effective, model for representing a stochastic dynamical system.
Here, the dynamics are summarized by a conditional density called thetransition
model:

p(Xt+1
1 , . . . , Xt+1

n | Xt
1, . . . , X

t
n).

Using this transition model, we can computep(Xt+1
1 , . . . , Xt+1

n | o1...t) using a
simple marginalization operation:

p(xt+1
1 , . . . , xt+1

n | o1...t) =Z
p(xt+1

1 , . . . , xt+1
n | xt

1, . . . , x
t
n)p(xt

1, . . . , x
t
n | o1...t)dxt

1 . . . dxt
n.

This formula assumes that the transition modelp(Xt+1 | Xt) is the same for all
times t. In our deployment, for example, in the mornings the temperatures tend
to increase, while at night they tend to decrease. This suggests that the transition
model should be different at different times of the day. In our experimental results
in Section 6, we address this problem by simply learning a different transition
modelpi(Xt+1 | Xt) for each houri of the day. At a particular timet, we simply
use the transition modelmod(t, 24). This idea can, of course, be generalized to
other cyclic variations.

Once we have obtainedp(Xt+1
1 , . . . , Xt+1

n | o1...t), the prior pdf for time
t + 1, we can again incorporate the measurementsot+1 made at timet + 1, as in
Section 3.1, obtainingp(Xt+1

1 , . . . , Xt+1
n | o1...t+1), the posterior distribution at

time t + 1 given all measurements made up to timet + 1.
This process is then repeated for timet + 2, and so on. The pdf for the initial

time t = 0, p(X0
1 , . . . , X0

n), is initialized with the prior distribution for attributes
X1, . . . , Xn. This process of pushing our estimate for the density at timet through
the transition model and then conditioning on the measurements at timet + 1
is often calledfiltering. In contrast to the static model described in the previous
section, filtering allows us to condition our estimate on the complete history of
observations, which, as we will see in Section 6, can significantly reduce the num-
ber of observations required for obtaining confident approximate answers to our
queries.

Example 3.3 In BBQ, we focus on Gaussian distributions; for these dis-
tributions the filtering process is called aKalman filter. The transition
model p(Xt+1

1 , . . . , Xt+1
n | Xt

1, . . . , X
t
n) can be learned from data with

two simple steps: First, we learn a mean and covariance matrix for
the joint densityp(Xt+1

1 , . . . , Xt+1
n , Xt

1, . . . , X
t
n). That is, we form tuples〈

Xt+1
1 , . . . , Xt+1

n , Xt
1, . . . , X

t
n

〉
for our attributes at every consecutive timest and

t + 1, and use these tuples to compute the joint mean vector and covariance ma-
trix. Then, we use the conditioning rule described in Example 3.1 to compute the
transition model:

p(Xt+1 | Xt) =
p(Xt+1,Xt)

p(Xt)
.

Once we have obtained this transition model, we can answer our queries in a
similar fashion as described in Examples 3.1 and 3.2.ut
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4 Choosing an observation plan

In the previous section, we showed that our pdfs can be conditioned on the valueo
of the set of observed attributes to obtain a more confident answer to our query. Of
course, the choice of attributes that we observe will crucially affect the resulting
posterior density. In this section, we focus on selecting the attributes that are ex-
pected to increase the confidences in the answer to our particular query at minimal
cost. We first formalize the notion of cost of observing a particular set of attributes.
Then, we describe the expected improvement in our answer from observing this
set. Finally, we discuss the problem of optimizing the choice of attributes.

This section focuses on the case where our plans aresequential– that is, the
order in which attributes are observed is fixed at the time the observation plan
is generated at the base station. In Section 5 we describe our approach to gener-
ating conditional plansthat evaluate different predicates and predicate orderings
depending on the values observed as the plan is executed in the network.

4.1 Cost of observations

Let us denote a set of observations byO ⊆ {1, . . . , n}. The expected costC(O)
of observing attributesO is divided additively into two parts: the data acquisition
costCa(O), representing the cost of sensing these attributes, and the expected data
transmission costCt(O), measuring the communication cost required to download
this data.

The acquisition costCa(O) is deterministically given by the sum of the energy
required to observe the attributesO, as discussed in Section 2.5:

Ca(O) =
∑
i∈O

Ca(i),

whereCa(i) is the cost of observing attributeXi.
The definition of the transmission costCt(O) is somewhat trickier, as it de-

pends on the particular data collection mechanism used to collect these observa-
tions from the network, and on the network topology. Furthermore, if the topology
is unknown or changes over time, or if the communication links between nodes
are unreliable, as in most sensor networks, this cost function becomes stochastic.
For simplicity, we focus on networks with known topologies, but with unreliable
communication. We address this reliability issue by introducing acknowledgment
messages and retransmissions.

More specifically, we define our network graph by a set of edgesE , where
each edgeeij is associated two link quality estimates,pij andpji, indicating the
probability that a packet fromi will reach j and vice versa. With the simplify-
ing assumption that these probabilities are independent, the expected number of
transmission and acknowledgment messages required to guarantee a successful
transmission betweeni and j is 1

pijpji
. We can now use these simple values to

estimate the expected transmission cost.
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There are many possible mechanisms for traversing the network and collect-
ing this data. We focus on simply choosing a single path through the network
that visits all sensors that observe attributes inO and returns to the base station.
Clearly, choosing the best such path is an instance of thetraveling salesman prob-
lem, where the graph is given by the edgesE with weights 1

pijpji
. Although this

problem is NP-complete, we can use well-known heuristics, such as k-OPT [37],
that are known to perform very well in practice. We thus defineCt(O) to be the
expected cost of this (suboptimal) path, and our expected total cost for observing
O can now be obtained byC(O) = Ca(O) + Ct(O).

4.2 Improvement in confidence

Observing attributesO should improve the confidence of our posterior density.
That is, after observing these attributes, we should be able to answer our query with
more certainty6. For a particular valueo of our observationsO, we can compute
the posterior densityp(X1, . . . , Xn | o) and estimate our confidence as described
in Section 3.1.

More specifically, suppose that we have a range queryXi ∈ [ai, bi], we can
compute the benefitRi(o) of observing the specific valueo by:

Ri(o) = max [P (Xi ∈ [ai, bi] | o), 1− P (Xi ∈ [ai, bi] | o)] ,

that is, for a range query,Ri(o) simply measures our confidence after observing
o. For value and average queries, we define the benefit byRi(o) = P (Xi ∈
[x̄i− ε, x̄i + ε] | o), wherex̄i in this formula is the posterior mean ofXi given the
observationso.

However, the specific valueo of the attributesO is not knowna priori. We
must thus compute theexpected benefitRi(O):

Ri(O) =
∫

p(o)Ri(o)do. (3)

This integral may be difficult to compute in closed-form, and we may need to
estimateRi(O) using numerical integration.

Example 4.1 The descriptions in Examples 3.1-3.3 describe how the benefits
Ri(o) can be computed for a particular observed valueo in the Gaussian mod-
els used in BBQ. For general range queries, even with Gaussians, we need to use
numerical integration techniques to estimate the expected rewardRi(O) in Equa-
tion (3).

However, for value and AVERAGE queries we can compute this expression in
closed-form, by exploiting the fact described in Example 3.1 that the posterior
covarianceΣY|O does not depend on the observed valueo. Note that for these
queries, we are computing the probability that the true value deviates by more

6 This is not true in all cases; for range predicates, the confidence in the answer may
decreaseafter an observation, depending on the observed value.
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than ε from the posterior mean value. This probability is equal to the probability
that a zero mean Gaussian, with covarianceΣY|O, deviates by more thanε from
0. This probability can be computed using the error function (erf) and the covari-
ance matrixΣY|O. Thus, for value and AVERAGE queriesRi(O) = Ri(o),∀o,
allowing us to compute Equation (3) in closed-form.ut

More generally, we may have range or value queries over multiple attributes.
Semantically, we define this type of query as trying to achieve a particular marginal
confidence over each attribute. We must thus decide how to trade off confidences
between different attributes. For a query over attributesQ ⊆ {1, . . . , n}, we
can, for instance, define the total benefitR(o) of observing valueo as either
the minimum benefit over all attributes,R(o) = mini∈Q Ri(o), or the average,
R(o) = 1

|Q|
∑

i∈Q Ri(o). In this article, we focus on minimizing the total number
of mistakes made by the query processor, and use the average benefit to decide
when to stop observing new attributes.

4.3 Optimization

In the previous sections, we defined the expected benefitR(O) and costC(O) of
observing attributesO. Of course, different sets of observed attributes will lead
to different benefit and cost levels. Our user will define a desired confidence level
1 − δ. We would like to pick the set of attributesO that meet this confidence at a
minimum cost:

minimizeO⊆{1,...,n} C(O),
such that R(O) ≥ 1− δ.

(4)

This general optimization problem is known to be NP-hard. Thus, efficient and
exact optimization algorithms are unlikely to exist (unless P=NP).

We have developed two algorithms for solving this optimization problem. The
first algorithm exhaustively searches over the possible subsets of possible observa-
tions,O ⊆ {1, . . . , n}. This algorithm can thus find the optimal subset of attributes
to observe, but has an exponential running time.

The second algorithm uses a greedy incremental heuristic. We initialize the
search with an empty set of attributes,O = ∅. At each iteration, for each attribute
Xi that is not in our set (i 6∈ O), we compute the new expect benefitR(O∪ i) and
costC(O ∪ i). If some set of attributesG reach the desired confidence, (i.e., for
j ∈ G, R(O ∪ j) ≥ 1 − δ), then, among the attributes inG, we pick the one with
lowest total costC(O ∪ j), and terminate the search returningO ∪ j. Otherwise,
if G = ∅, we have not reached our desired confidence, and we simply add the
attribute with the highest benefit over cost ratio to our set of attributes:

O = O ∪
(

arg max
j 6∈O

R(O ∪ j)
C(O ∪ j)

)
.

This process is then repeated until the desired confidence is reached.
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5 Conditional Observation Plans

In this section, we extend the definition of observation plans introduced in the
previous section to allow the possibility ofconditional plans– that is, plans in
which a different subset of nodes is observed depending on the value of a particular
attribute at a particular node. This has the potential to significantly reduce the
number of variables that must be observed; some examples include:

– Suppose we are evaluating a range query with a higha priori probability of
being true for a particular variable that is highly correlated with many other
variables. If that variable is observed to be very far outside the queried range,
we may be able to infer that all other variables in the query will also be outside
the range.

– If two sensorss1 ands2 are uncorrelated when a given sensors is in a par-
ticular ranger, but otherwise relatively highly correlated, we may only need
to observe both of them ifs is within r. Otherwise, just observings1 may be
sufficient. Examples of this occur in our lab deployment when one sensor has
sun shining on it, causing its light value to be unusually high. The tempera-
ture readings on such bright nodes are often much higher than the temperature
readings on other sensors in the lab that they are otherwise correlated with.

Conditional plans, which we denoteB, consist of a tree of nodes; at each node
i, we observe the value of an attributeAi and then execute one of two possible
sub-plans depending on its value. Each nodei in the plan runs at some physical
sensor which has access to the value ofAi. We allow for multiple split points over
the same attribute.

From an architectural perspective,conditional planningrequires only a few
small changes to the design of the system. These changes are entirely confined
to the portion of BBQ that runs within the sensor network: the external interface
continues to function just as it did before. Figure 4 shows how the architecture
differs: notice that the top layers of the system are the same, but that at the lower
levels plans may now have branches in them. Plan execution works very much as
in the previous sections: once a plan is generated, it is sent to the first node in the
plan, which evaluates the first predicate and executes the appropriate sub-planB′
(based on the predicate’s value), sending the query to the first node inB′.

Conditional plans introduce several complications to the basic plan generation
algorithm described in the previous section:

– They require a way to evaluate the cost of execution of a conditional plan, so
that we can pick the best plan that satisfies the user specified confidence bounds
and query. Plan cost should includeplan sizesince our conditional plans may
be quite large.

– They require a metric to evaluate the benefit of a particular conditional plan
relative to other (conditional or non-conditional) plans.

– They require an algorithm to generate a conditional plan. This is substantially
more complicated than algorithms for non-conditional plans described in the
previous section because there are a huge number of possible split points at
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Probabilistic Model and Planner

Query Processor

Data
"1, voltage = 2.73
 2, voltage = 2.4
 5, voltage = 2.27
 4, temp = 25° "

1

2

3
4

5
6

7

8

Conditional Plan
obs. voltage(1)
if (voltage(1) > 2.25)
         obs. voltage(2)
         if (voltage(2) > 2.5)
               obs. light(4)
               if (light(4) > 100)
                      return to 1
               else
                      obs. temp(1)
                      return
         else
               obs. voltage(5)
               if (voltage(5)... 

(a)

(b)

(c)

(d)

(e)

(f)

(a)

(b)

(c,d,g)

(e)
(f)

Fig. 4 Diagram illustrating a conditional execution plan in a sensor network. At each node,
there are two possible paths that may be followed; the darker, dashed lines indicate the path
that was actually executed. A portion of the conditional plan is shown being sent into the
network; the decision points are labeled (a) through (f) and are shown at the appropriate
node in the network traversal.

each step of the algorithm, and evaluating the benefit of a particular split is
computationally expensive.

We discuss each of these three issues in turn in the next three sections.

5.1 Cost of a conditional plan

To introduce our approach to evaluating the cost of a conditional plan, we intro-
duce some additional notation for representing plans. We choose to represent a
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plan,B, as a simple binary decision tree7, where each split pointsj specifies a
binaryconditioning predicate, Tj(Xi ≥ xi), that splits the plan into two alternate
conditional plans,BTj(x)=true andBTj(x)=false, whereTj(x) is the truth value of
Tj on the tuplex. Each conditioning predicate depends only on the value of a sin-
gle attribute. In a centralized setting, at split pointsj the query processor would
evaluate the predicateTj(x) and choose to execute one of these two subplans de-
pending on the value of the predicate. In our distributed sensor network setting,
we must assign a nodenodeOf[sj ] to each split pointsj , representing the network
location where the sensor value used in the predicate insj can be retrieved. Note
that, if, for a split pointsj , the attributeX from nodei has already been observed
at an earlier node in the plan, we do not need to visit nodei to obtain the attribute
value. In such cases, we setnodeOf[sj ] to be the parent ofsj in the plan, denoted
by Parent[sj ].

In Section 4, we defined simple observation plans that traverse the network to
collect the measurementsO. During execution of a conditional planB, we simply
traverse the binary tree defined byB, acquiring any attributes we need to evaluate
the conditioning predicates. For a particular tuplex, i.e., an assignment to all at-
tributes, our plan will traverse a single path from the root to a leaf of the binary
treeB. Analogously to Section 4, a traversal from the root to a leaf of the tree
corresponds to a list of nodes to be visited. However, the specific traversal will
depend on the specific choices made in the splitting points.

The cost of a specific traversal through a binary tree is the sum of the cost of
the attributes that are acquired by planB in this traversal, plus the incurred com-
munication cost to visit these nodes in the network. Specifically, at each split point
sj in this traversal, if the attribute in the predicateTj has already been acquired,
then this split point has zeroatomic cost. However, if the attributeXi in Tj has not
yet been acquired, then the atomic cost of this node isCa(i) plus the transmission
costCt(v, i), wherev is nodeOf[Parent[sj ]]. The transmission costCt(v, i) can be
specified by the cost of the shortest path fromv to i in our network graph, as in
Section 4.1.8 Note that the atomic cost of a leaf is only the cost of returning from
the network node associated with this leaf to the base station, as no attributes are
acquired at this point. For simplicity, we annotate each split pointsj of our plan
with this atomic costC(sj).

We can now formally define thetraversal costC(B,x) of applying planB to
the tuplex of the plan recursively by:

C(B,x) = C(Root (B)) +
{

0, if |B| = 1;
C(BTj(x),x), otherwise; (5)

whereRoot (B) is the root split point of the tree for planB, C(Root (B)) is the
atomic cost of this root node as defined above, and|B| = 1 indicates that we have
reached a leaf and can stop the recursion.

7 Our approach can, of course, be extended to more general decision trees, or acyclic
decision diagrams [5].

8 We can also consider the plan size when estimating these costs, as the decision tree is
pruned every time an observation is made.
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In this setting, planning is an optimization problem that involves searching the
space of available conditional plans that satisfy the user’s query for the planB∗
with minimal expected cost:

B∗ = arg min
B

C(B),

= arg min
B

Ex [C(B,x)] ,

= arg min
B

∫
x

P (x)C(B,x)dx. (6)

Using the recursive definition of the costC(B,x) of evaluating a tuplex in
Equation (5), we can similarly specify a recursive definition of the expected cost
C(B) of a plan. For this recursion, we must specify, at each split pointsj of the
plan, the conditional probability that the associated predicateTj will be true or
false, given the predicates evaluated thus far in the plan. We uset to denote an
assignment to this set of predicates. Using this notation, the expected plan cost is
given by:

C(B, t) = C(Root (B)) +

8>><>>:
0, if |B| = 1;

P (Tj | t)C(BTj , t ∧ Tj)+
P (¬Tj | t)C(B¬Tj , t ∧ ¬Tj),

otherwise;
(7)

whereC(B, t) is the expected cost of the (sub)planB starting from its root split
point Root (B), given that the predicatest have been observed. At this point,
the expected cost depends on the value of the new predicateTj . With probability
P (Tj | t), Tj will be true and we must solve the subproblemC(BTj

, t ∧ Tj),
i.e., the subplanBTj

after observing the original predicate valuest and the new
predicate valueTj = true. Similarly, with probabilityP (¬Tj | t) = 1−P (Tj | t),
Tj will be false and we must solveC(B¬Tj , t ∧ ¬Tj), i.e., the subplanB¬Tj after
observingt and theTj = false. As before, when we reach a leaf (|B| = 1), the
recursion stops. Now the expected cost of a planB is defined using Equation (7)
by C(B, ∅).

Example 5.1 Consider the simple example of exhaustively enumerating the plans
for a query over three attributes,{X1, X2, X3}, each with binary domain{1, 2}.
Our query,Q, in this example is simplyQ = (X1 = 1 ∧X2 = 1). For sake of
exposition, we will assume that the confidence required in the answer is 100%
(δ = 0), i.e., no error is tolerated. Figure 5 shows three possible plans in this
enumeration; there are 12 total possible plans in this case9. Each node in this
figure is labeled with the attribute acquired at that node, and thePi values denote
the conditional probability of the outcome along each edge occurring, given the
outcomes already specified in the plan branch. Terminal outcomes are denoted as
true or false, indicating that a tuple that reaches this node is output or rejected.

9 The number of plans is larger if 100% confidence is not desired, or if the probability
distribution containszeroes. For example, a plan that simply observesX3 and stops might
achieve the desired confidence level and might be a valid plan in some cases.
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Fig. 5 Set of possible plans for the two predicate queryX1 = 1 ∧ X2 = 1, for δ = 0,
with three attributes,X1, X2, andX3 available for use in the query. The labels in the nodes
indicate the attribute acquired at that point, and the labels on the edges denote the probability
of the outcome along that edge. EachPi expands into the conditional probability expansion
given at the bottom of the figure. Terminal points in the tree are labeled with their outcome:
true if the query is satisfied with probability1− δ or falseif it fails with probability 1− δ.
Grayed out regions do not need to be explored because the confidence in the truth value of
the query is greater than1− δ given the observations so far.

In general, if at some branch of the plan, our confidence in the truth value ofQ
is greater than1−δ we do not need to further expand the tree. We can evaluate this
confidence using the techniques for determining whether a range query is satisfied
described in Section 3.1, conditioning on the outcomes of earlier plan branches.
For example, in Plan (11) in Figure 5, afterX3 ≤ 1 has been observed, we can
stop evaluating the plan if:

P (X1 = 1 ∧X2 = 1|X3 ≤ 1) ≥ 1− δ

or if:
P (X1 6= 1 ∨X2 6= 1|X3 ≤ 1) ≥ 1− δ

For example, in Figure 5, the grayed-out regions represent branches of the plan
that do not need to be evaluated since a query predicate has failed. The outlined
box at the top of Plan (1) indicates that all query predicates have been evaluated
on this branch, soX3 does not need to be acquired.

Given the plans in Figure 5, it is straightforward to read off the expected cost
as defined in Equation (7). For example, for Plan (11) the cost is:

C(Plan (11)) = C3+
P (X3 ≤ 1)(C2 + P (X2 ≤ 1 | X3 ≤ 1)C1)+
P (X3 ≥ 2)(C1 + P (X1 ≤ 1 | X3 ≥ 2)C2),
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where, for example, when branching onX2, we do not need to consider the branch
for the assignmentX2 = 2 as this assignment makesϕ false and we replace the
grayed-out box by a leaf with value false.

The key observation here is that the cheapest possible plan is not always the
one that immediately acquires the values of the attributes in the query predicates.
In our example, plan (12) could be cheaper than plan (1), if observingX3 has
low cost and dramatically skews the probabilities of the attributesX1 andX2. In
particular, if X3 = 1 increases the probability ofX2 = 2, then observingX3

may allow us to select the particular attribute that is more likely to determine if
ϕ = false. Thus, ifX3 = 1, the query processor may avoid acquiringX1, which it
does first in plan (1). ut

5.2 Improvement in confidence with conditional planning

As was the case in Section 4, in addition to defining the cost of a conditional
plan, we also need to measure the expected benefitR(B). As in Section 4.2, we
define the benefit of a planB as our overall confidence that the truth value of the
predicates in the user query will be predicted correctly.

During the execution of a conditional planB for a queryQ with |Q| predicates,
we will traverse a path from the root to a single leaf,l in the plan. We define our
average benefit,R(B,ol) as our confidence inB being satisfied atl given a tuple
of observationsol up to that leaf. The value ofR(B,ol) is simply the average
probability that the truth value of any query predicate will be predicted correctly.
More formally, this can be expressed as:

R(B,ol) = max[P (B|ol), 1−P (B|ol)] =
1
|Q|

∑
i∈Q

max[P (Qi|ol), 1− P (Qi|ol)]

WhereQi is theith predicate ofQ, andP (Qi|ol) is the probability that predicate
Qi is true given the values of all attributes observed inol.

As before, we need to generalize this equation to compute the expected benefit
of B over all tuples. We can compute this simply by summing the expected benefit
of every possible pathp from root to leaf times the probability that a tuple traverses
p, as follows.

The expected benefit of a pathp terminating in leaf nodelp is the probability
that the predicted truth value atlp is correct given the value of the conditioning
predicates observed alongp. We usetlp to denote a complete assignment to the
set of boolean predicates along a path. Then, we simply defineRtlp

(B, tlp) anal-
ogously toR(B,o), substituting observed truth values of the predicates,tlp , for
actual tuple values:

Rtlp
(B, tlp) =

1
|Q|

∑
i∈Q

max[P (Qi|tlp), 1− P (Qi|tlp)]. (8)
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As in Section 4, computing the value ofP (Qi|tlp) requires an integral over the set
of all observationsotlp

that satisfytlp , that is:∫
o∈otlp

P (Qi,o)do.

To compute the expected benefit over all paths, we can recursively sum the
probability of each path times its benefit, as in Equation (7):

R(B, t) =

8>><>>:
Rt(B, t), if |B| = 1;

P (Tj | t)R(BTj , t ∧ Tj)+
P (¬Tj | t)R(B¬Tj , t ∧ ¬Tj),

otherwise;
(9)

whereR(B, t) is the expected benefit of the (sub)planB starting from its root,
given that the predicatest have been observed. At this point, the expected benefit
depends on the value of the first predicateTj in B. With probabilityP (Tj | t), Tj

will be true and we must solve the subproblemR(BTj
, t ∧ Tj), i.e., the subplan

BTj after observing the original predicate valuest and the new predicate value
Tj = true. Similarly, with probabilityP (¬Tj | t) = 1−P (Tj | t), Tj will be false
and we must solveR(B¬Tj

, t ∧ ¬Tj), i.e., the subplanB¬Tj
after observingt and

theTj = false. As before, when we reach a leaf (|B| = 1), the recursion stops and
we compute the total cost of the assignment to all predicates using Equation (8).
Now the expected cost of a benefitB is defined using Equation (9) byR(B, ∅).

Example 5.2 As in Example 4.1, the integral required to compute the value of
R(B, tlp) for a particular assignment totlp for a Gaussian model may require
the use of numerical integration techniques. Note, however, that for value and
AVERAGE queries in Gaussian models, as discussed in Example 4.1,Ri(O) =
Ri(o),∀o, that is, the specific observed attribute value does not affect the reward
function. Thus, the optimal observation plan is indifferent to the observed attribute
value for such value or average queries. Therefore, there is no advantage to using
conditional plans over the simple sequential plans discussed in Section 4 when
dealing with such queries. Of course, for range queries and aggregation with se-
lection, conditional plans can provide significant advantage, as shown in our ex-
periments in Section 6.ut

As with unconditional plans in Section 4.2, we must compute the expected
improvement in confidence for our answer as we make observations. In consider a
split point

Observing attributesO should improve the confidence of our posterior density.
That is, after observing these attributes, we should be able to answer our query with
more certainty10. For a particular valueo of our observationsO, we can compute
the posterior densityp(X1, . . . , Xn | o) and estimate our confidence as described
in Section 3.1.

10 This is not true in all cases; for range predicates, the confidence in the answer may
decreaseafter an observation, depending on the observed value.



26 A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, W. Hong

More specifically, suppose that we have a range queryXi ∈ [ai, bi], we can
compute the benefitRi(o) of observing the specific valueo by:

Ri(o) = max [P (Xi ∈ [ai, bi] | o), 1− P (Xi ∈ [ai, bi] | o)] ,

that is, for a range query,Ri(o) simply measures our confidence after observing
o. For value and average queries, we define the benefit byRi(o) = P (Xi ∈
[x̄i− ε, x̄i + ε] | o), wherex̄i in this formula is the posterior mean ofXi given the
observationso.

However, the specific valueo of the attributesO is not knowna priori. We
must thus compute theexpected benefitRi(O):

Ri(O) =
∫

p(o)Ri(o)do. (10)

This integral may be difficult to compute in closed-form, and we may need to
estimateRi(O) using numerical integration.

5.3 Optimizing conditional plans

In the previous sections, we defined the expected benefitR(B) and costC(B)
of a conditional planB. Of course, as in Section 4.3, different plans will lead to
different benefit and cost levels. Our user will define a desired confidence level1−
δ. Analogously to Equation (4) for the simpler problem of selecting observations,
we would like to pick a planB that meets this confidence at a minimum cost:

minimizeB C(B),
such that R(B) ≥ 1− δ.

(11)

This general optimization problem is again NP-hard [17]. Thus, efficient and ex-
act optimization algorithms are unlikely to exist (unless P=NP). In this paper, we
describe a simple heuristic search technique for optimizing conditional plans that
appears to be very effective in practice.

In Section 4.3, we presented asubset selectionheuristic that selects a set of
attributes to observe. Note that such a subset is a simple conditional plan with no
branching. We thus use such subsets as the base line for our conditional planning
heuristic: Each leafl of our conditional plans is associated with a subset plan,
as in Section 4.3. After observing the predicates in the pathp to leaf l, our plan
will continue by observing a subset planOl. Estimating the benefit of these aug-
mented trees is analogous to Equation (9), though now, when we reach a leaf, the
atomic benefitRtl

(B, tl) needs to include the benefit of the subset planOl, as
defined in Section 4.2. Note that, when we reachl, we have already observed a
set of predicatestl. Thus, the benefitOl must be computed from the conditional
distributionP (o | tl). We denote this quantity byR(Ol | tl). The cost of these
augmented plans is computed in an analogous fashion, where the leaves include
the costC(Ol | tl) of the subset planOl, given the observations made on the
conditional plan up to leafl.
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Our heuristic conditional planning algorithm starts with a minimal conditional
plan: a single node associated with the subset plan obtained from Section 4.3. The
basic operation of our heuristic search is to select a leaf, and replace this leaf with
a single predicate split. This operation splits the leaf into two new leaves. Each
of these new leaves is then associated with a new subset plan: one leaf will have
a plan for the true outcome of the predicate, and the other leaf will consider the
negative outcome.

At each iteration of our heuristic, we greedily pick the leaf that offers the best
expected cost-benefit for splitting. Let us first consider the expected cost of split-
ting a leafl with a predicateTj . We denote this quantity by SplitC(l, Tj). This cost
is the increase fromC(Ol | tl) to the new plan where the leafl is split into two
new leavesu andv:

SplitC(l, Tj) = P (tl)C(Tj | tl)+
P (tl)P (Tj | tl)C(Ou | tl ∧ Tj) + P (tl)P (¬Tj | tl)C(Ov | tl ∧ ¬Tj)
−P (tl)C(Ol | tl),

(12)
whereC(Tj | tl) is the cost of observing the attribute inTj after observing the

attributes intl, as discussed in Section 5.1. Note that, in order to compute the
expected cost, we must multiply benefits by the probabilityP (tl) of reaching this
leaf.

The expected benefit of splitting a leaf, SplitR(l, Tj), is computed in an analo-
gous manner:

SplitR(l, Tj) = P (tl)P (Tj | tl)R(Ou | tl ∧ Tj) + P (tl)P (¬Tj | tl)R(Ov | tl ∧ ¬Tj)
−P (tl)R(Ol | tl).

(13)
Note that if bothR(Ou | tl ∧ Tj) andR(Ou | tl ∧ ¬Tj) are greater than1 − δ,

then the weighted average benefit:

P (Tj | tl)R(Ou | tl ∧ Tj) + P (¬Tj | tl)R(Ov | tl ∧ ¬Tj)

will also be greater than1 − δ, as required by the user. However, this constraint
is very conservative. Suppose, for example, thatP (Tj | tl) = P (¬Tj | tl) =
0.5, and that1 − δ = 0.9. If R(Ou | tl ∧ Tj) = 0.95, we are allowed to have
R(Ov | tl ∧ ¬Tj) as low as0.85 and still guarantee our user specified bound, at a
potentially lower cost. Thus, we must trade-off the distribution of benefit between
leaves of our conditional plan.

The optimal strategy to achieve this trade-off is to compute the cost at the
leaves for each possible benefit level, and then use a dynamic programming pass
over the tree representing the plan to compute the optimal benefit levels at the
leaves. Though polynomial, this algorithm requires us to compute a subset plan for
each leaf and each possible benefit level. This process proved to be impractically
slow in our experiments. Instead, we applied a simple heuristic: when considering
splitting a leafl into leavesu andv, we solve the subset plan problem for leafu to
the desired level of benefit1− δ, as in Section 4.3. Once this plan is computed, its
expected benefitR(Ou | tl∧Tj) may be higher than1−δ, say,1−β, whereβ > δ.
When such a situation occurs, we allow a lower target benefitR(Ov | tl ∧ ¬Tj)
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for leafv. Specifically, the subset plan of leafv must achieve at least:

(1− δ)− P (Tj | tl)(1− β)
P (¬Tj | tl)

.

Using this heuristic, each split should give about the same expected benefit. Thus
SplitR(l, Tj) should be close to zero for all leavesl, for any predicateTj . On
the other hand, splitting some leaves will reduce the expected cost more signifi-
cantly than other leaves. Thus, our heuristic conditional planning algorithm can
simply greedily select the leafl that most rapidly decreases the expected cost
SplitC(l, Tj).

We must also consider which predicateTj to apply. Here, we focus on pred-
icates of the formTj(Xi ≥ xi). Our greedy algorithm thus selects the next leaf
l, and attributeXi and valuexi that most significantly reduces SplitC(l, Tj). This
method is implemented efficiently with a priority queue and caching of leaf benefit
values. Furthermore by, using an indexing technique we describe in [17], we can
speed-up the estimation of these values from a set of samples of the underlying
probabilistic model.

6 Experimental results

In this section we measure the performance of BBQ on several real world data
sets. Our goal is to demonstrate that BBQ provides the ability to efficiently execute
approximate queries with user-specifiable confidences.

6.1 Data sets

Our results are based on running experiments over two real-world data sets that we
have collected during the past few months using TinyDB.

1. Garden: The first data set,garden, is a one month trace of 83,000 readings
from 11 sensors in a single redwood tree at the UC Botanical Garden in Berke-
ley. In this case, sensors were placed at 4 different altitudes in the tree, where
they collected light, humidity, temperature, and voltage readings once every 5
minutes. We split this data set into non-overlapping training and test data sets
(with 2/3 used for training), and train the model using the training data.
Observation and Communication Costs:Because of the short physical dis-
tances between these sensors, the observation costs tend to dominate the cost
of any observation plan. In general it is not easy to assign precise costs to
various operations done in a sensor network because of the complex opera-
tions that make up the more abstract operations. For example, in computing
the communication cost, though it is possible to measure how much energy
a given transmission takes, whether the radio was already on, the number of
retransmissions required, and the sleep schedule that the sensor is operating
under, can makes such accounting for energy non-trivial.
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We simulate the fact that observation costs dominate the communication costs
by setting the observation costs to be about a factor of 5 more than the commu-
nication cost. We set the observation cost to be 10mJ per observation, whereas
the energy cost for a message transmission varies from a minimum of 1.25 mJ
to a maximum of 6.25 mJ between two nodes in the network.

2. Lab: The second data set,lab, is a trace of readings from 54 sensors in the Intel
Research, Berkeley lab. These sensors collected light, humidity, temperature
and voltage readings, as well as network connectivity information that makes
it possible to reconstruct the network topology. Currently, the data consists
of 8 days of readings; we use the first 6 days for training, and the last 2 for
generating test traces.

The split between training and test sets were chosen to provide training sets suffi-
ciently large to represent the variability in the data, while leaving enough test data
for a statistically-significant evaluation of the approaches.

6.2 Query workload

We report results for two sets of query workloads:
Value Queries:The main type of queries that we anticipate users would run

on such a system are queries asking to report the sensor readings at all the sensors,
within a specified error boundε with a specified confidenceδ, indicating that no
more than a fraction1−δ of the readings should deviate from their true value byε.
As an example, a typical query may ask for temperatures at all the sensors within
0.5 degrees with 95% confidence.

Predicate Queries:The second set of queries that we use are selection queries
over the sensor readings where the user asks for all sensors that satisfy a certain
predicate, and once again specifies a desired confidenceδ.

Average Queries:Finally, we also present results foraveragequeries, that ask
for the average value of a quantity over all sensors within a specified error boundε
with a specified confidenceδ, indicating that the probability of the reported value
deviating from the true average by more thanε is less thanδ.

6.3 Comparison systems

We compare the effectiveness of BBQ against two strategies for answering such
queries :

TinyDB-style Querying: In this model, the query is disseminated into the
sensor network using an overlay tree structure [40], and at each mote, the sensor
reading is observed. The results are reported back to the base station using the
same tree, and are combined along the way back to minimize communication cost.

Approximate-Caching: The base-station maintains a view of the sensor read-
ings at all motes that is guaranteed to be within a certain interval of the actual sen-
sor readings by requiring the motes to report a sensor reading to the base-station
if the value of the sensor falls outside this interval. Note that, though this model
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saves communication cost by not reporting readings if they do not change much,
it does not save acquisition costs as the motes are required to observe the sensor
values at every time step. This approach is inspired by work by Olstonet al. [43]
and the TiNA system [53].

6.4 Methodology

BBQ is used to build a model of the training data. This model includes a transition
model for each hour of the day, based on Kalman filters described in Example 3.3
above. We generate traces from the test data by taking one reading randomly from
each hour. These traces are used to evaluate how well BBQ does at predicting the
temperature within each hour. We issue one query against the model per hour. The
model computes thea priori probabilities for each predicate (orε bound) being
satisfied, and chooses one or more additional sensor readings to observe if the
confidence bounds are not met. After executing the generated observation plan
over the network (at some cost), BBQ updates the model with the observed values
from the test data and compares predicted values for non-observed readings to the
test data from that hour.

To measure the accuracy of our prediction with value queries, we compute
the average number of mistakes (per hour) that BBQ made,i.e., how many of the
reported values are further away from the actual values than the specified error
bound. To measure the accuracy for predicate queries, we compute the number of
predicates whose truth value was incorrectly approximated. Similarly, to measure
the accuracy of average queries, we compute the number of hours when BBQ
provided an answer further from the true average by more than the specified error
bound.

For TinyDB, all queries are answered “correctly” (as we are assuming suf-
ficient retransmissions are done to successfully deliver messages). Similarly, for
approximate caching, a value from the test data is reported when it deviates by
more thanε from the last reported value from that sensor, and, thus, this approach
does not make mistakes either.

We compute a cost for each observation plan as described above; this includes
both the attribute acquisition cost and the communications cost. For most of our
experiments, we measure the accuracy of our model at predicting temperature.

6.5 Garden dataset: Value-based queries

We begin by analyzing the performance of value queries on thegardendata set
in detail to demonstrate the effectiveness of our architecture. The query we use
for this experiment requires the system to report the temperatures at all motes to
within a specified epsilon, which we vary. In these experiments we keep confidence
constant at 95%, so we expect to see no more than 5% errors. Figure 6 shows the
relative cost and number of errors made for each of the three systems. We varied
epsilon from between 0 and 1 degrees Celsius; as expected, the cost of BBQ (on
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Fig. 6 Figure illustrating the relative costs of BBQ versus TinyDB and Approximate
Caching on the garden data, with varying the interval width parameter, epsilon, used by
BBQ and Approximate Caching, and using a confidence interval of 95% in BBQ.

the left of the figure) falls rapidly as epsilon increases, and the percentage of er-
rors (shown on the right) stays well below the specified confidence threshold of
5% (shown as the horizontal line). Notice that for reasonable values of epsilon,
BBQ uses significantly less communication than approximate caching or TinyDB,
sometimes by an order of magnitude. In this case, approximate caching always
reports the value to within epsilon, so it does not make “mistakes”, although the
average observation error in approximate caching is close to BBQ (for example,
in this experiment, with epsilon=.5, approximate caching has a root-mean-squared
error of .46, whereas for BBQ this error is .12; in other cases the relative perfor-
mance is reversed).

Figure 7 shows the percentage of sensors that BBQ observes by hour, with
varying epsilon, for the same set of garden experiments. As epsilon gets small
(less than .1 degrees), it is necessary to observe all nodes on every query, as the
variance between nodes is high enough that it cannot infer the value of one sensor
from other sensor’s readings with such accuracy. On the other hand, for epsilons 1
or larger, very few observations are needed, as the changes in one sensor closely
predict the values of other sensors. For intermediate epsilons, more observations
are needed, especially during times when sensor readings change dramatically.
The spikes in this case correspond to morning and evening, when temperature
changes relatively quickly as the sun comes up or goes down (hour 0 in this case
is midnight).

6.6 Garden Dataset: Sensitivity Analysis

With this set of experiments, we examine if the effectiveness of BBQ in the above
set of experiments was a result of higher observation costs in the Garden Deploy-
ment. As we discussed earlier, the observation costs in this network were about a
factor of 5 more than communication costs. We artificially vary this ratio from 100
to 0, and plot the relative costs of the three techniques for 4 such ratios in Figure
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Fig. 7 Figure showing the number of sensors observed over time for varying epsilons for
valuequeries with a 95% confidence on the garden data.

8. The approximate caching techniques suffer from having to make observations
at every time step, and hence lower observation costs should decrease the perfor-
mance benefits of BBQ over approximate caching. As we can see from Figure 8
(iv), even when the observation costs are 0, BBQ still performs significantly better
than approximate caching (by a factor of almost 20 whenε is equal to 1).

As this sensitivity analysis demonstrates, the approximate caching technique
is dominated by BBQ for all values of the sensing cost/communication cost ratios.
In addition, there are significant limitations to the approximate caching approach.
It does not allow us to exploit correlations between multiple sensors, and between
attributes, a significant strength of our approach. Furthermore, the approximate
caching technique is most appropriate for continuous queries, since nodes must be
advised of every change in the query. Given these limitations of the approximate
caching technique, we do not compare BBQ against approximate caching in the
rest of this section.

6.7 Garden Dataset: Cost vs. Confidence

For our next set of experiments, we again look at the garden data set, this time
comparing the cost of plan execution with confidence intervals ranging from 99%
to 80%, with epsilon again varying between 0.1 and 1.0. The results are shown in
Figure 9(a) and (b). Figure 9(a) shows that decreasing confidence intervals sub-
stantially reduces the energy per query, as does decreasing epsilon. Note that for a
confidence of 95%, with errors of just .5 degrees C, we can reduce expected per-
query energy costs from 5.4 J to less than 150 mJ – a factor of 40 reduction. Figure
9(b) shows that we meet or exceed our confidence interval in almost all cases (ex-
cept 99% confidence). It is not surprising that we occasionally fail to satisfy these
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Fig. 8 Comparing the effectiveness of the algorithms for varying ratios of communication
and observation costs. As we can see, over a wide range of ratios, the performance of BBQ
is significantly better than either of the other two techniques. Note that they-axes are plotted
on different scales across the graphs.

bounds by a small amount, as variances in our training data are somewhat different
than variances in our test data.

6.8 Garden Dataset: Comparing Observation Planning Algorithms

Figure 10 shows the experimental results comparing the greedy and the optimal
observation planning algorithms. We plot this for value of epsilon equal to 0.5. We
also show the results for a naive randomized algorithm that begins by (1) randomly
generating 5 observation plans that observe one attribute each, (2) checking if any
of them satisfies the confidence bound, and choosing the least cost plan among
those that do in that case, and (3) repeating Step 1 with observation plans that
observeonemore attribute otherwise.

As we can see, the performance of the greedy algorithm is very close to optimal
in most cases, whereas Random-5 performs somewhat worse than either of the
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Fig. 9 Energy per query (a) and percentage of errors (b) versus confidence interval size
and epsilon, forvaluequeries on the garden data. The45◦ line in (b) represents the target
number of mistakes for the given confidence level, points below this line have made less
mistakes than the confidence bounds allow them to make.
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Fig. 10 (a) Energy per query, and (b) observation planning times for various planning al-
gorithms versus the desired confidence on the garden data. We use avaluequery with an
epsilon of 0.5.

two algorithms. Comparing the execution times of these three algorithms, we can
see that the execution time of the optimal algorithm is significantly higher than
either of the other two algorithms, in some cases, by orders of magnitude. This
experiment demonstrates that the effectiveness and viability of the greedy planning
algorithm.

6.9 Garden Dataset: Comparing Dynamic vs Static

Next, we evaluate the effectiveness of dynamic models that incorporate observa-
tions made in the past to perform prediction. In Figure 11, we plot the ratio of
execution costs of BBQ using static and dynamic models versus confidence for
various values of epsilon. We show plots for bothvalueandaveragequeries. As
we can see, the benefits of using dynamic models can be very significant over
time, especially for higher values of epsilon. For smaller values of epsilon, both
algorithms tend to make a lot of observations, thus decreasing the effectiveness of
using dynamic models.
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Fig. 11 Ratio of costs of dynamic vs static forvalueandaveragequeries on the garden
data.

6.10 Garden Dataset: Average Queries
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Fig. 12 Energy per query (a) and percentage of errors (b) versus confidence interval size
and epsilon, foraveragequeries on the garden data.

Figure 12 shows the results of running BBQ foraveragequeries for varying
values of epsilon and confidences. As we can see, in most cases, we easily achieve
our required error bounds, and the number of observations required to do so is
typically very small.

6.11 Garden Dataset: Range queries

We ran a number of experiments with range queries (also over thegardendata
set). Figure 13 summarizes the average number of observations required for a 95%
confidence with three different range queries (temperature in [16,17], temperature
in [19,20], and temperature in [21,22]). Note that theε parameter does not play
a role in range queries, as discussed in Section 3.1. In all three cases, the actual
error rates were all at or below 5% (ranging from 1.5-5%). Notice that different
range queries require observations at different times – for example, during the set
of readings just before hour 50, the three queries make observations during three
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Fig. 13 Graph showing BBQ’s performance on three different range queries, for the garden
data set with confidence set to 95%.

disjoint time periods: early in the morning and late at night, the model must make
lots of observations to determine whether the temperature is in the range 16-17,
whereas during mid-day, it is continually making observations for the range 19-
20, but never for other ranges (because it can be sure the temperature is above 21
degrees, but not 22!)

6.12Labdataset

We also ran similar experiments on thelab dataset. We report one set of experi-
ments for this dataset as the results are similar to those found in the Garden data.

Figure 14(a) shows the cost incurred in answering a value query on this dataset,
as the confidence bound is varied. For comparative purposes, we also plot the cost
of answering the query using TinyDB. Once again, we see that as the required
confidence in answer drops, BBQ is able to answer the query more efficiently, and
is significantly more cost-efficient than TinyDB for larger error bounds. Figure
14(b) shows that BBQ was able to achieve the specified confidence bounds in
almost all the cases.

Figure 15 shows an example traversal generated by executing a value based
query with confidence of 99% and epsilon of .5 degrees C over thelab data. The
two paths shown are among the longer paths generated – one is the initial set of
observations needed to improve the model’s confidence, and the other is a traversal
at 8am just as the day is starting to warm up. The traversal observes a few nodes
at the edges of the lab because there is more variance near the windows.

6.13 Conditional Planning Experiments

In this section, we present experimental results demonstrating the effectiveness
of conditional planning to further reduce the number of observations made during
query evaluation. Recall that for the Gaussian probability distributions, conditional
planning can only make a difference forrangequeries, and notvalueor average
queries (Section 5.2). Hence we will present results for two different range queries.
The query processing techniques compared are:
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Fig. 14 Energy per query (a) and percentage of errors (b) versus confidence interval size
and epsilon for the Lab Data.

– TinyDB: As above this denotes the cost of collecting all the data from the
sensor networks using the minimal routing tree over the network. Since all
data is collected at all times, this technique always gives correct answers as
long as there is no missing data.

– BBQ-Static: Running BBQ withdynamicmodels turned off.
– BBQ-Static-Cond-n: Running BBQ withdynamicmodels turned off, but us-

ing conditional plans with at mostn branches.

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE
50

51

52 53

54

46

48

49

47

43

45

44

42 41

3739

38 36

33

3

6

10

11

12

13 14

15
16

17

19

20
21

22

2425
26283032

31

2729

23

18

9

5

8

7

4

34

1

2

35
40

0

7-8am 
Traversal

Initial
Traversal

Fig. 15 Two traversals of the lab network, for a value-query over all 54 sensors withε = .1
andδ = .99. An observation is made at every circled node. These paths correspond to times
when the model’s variance is high,e.g., when the system is first started, and at around 8am
when the sun begins to heat the lab, so many observations are needed. For other hours, very
few observations are needed.
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Fig. 16 Conditional planning experiments on the garden data: We plot the energy costs of
various query evaluation techniques for two range queries,〈17, 20〉, and〈18, 19〉.

– BBQ-Dynamic. BBQ with dynamicmodels turned on.
– BBQ-Dynamic-Cond-n. BBQ with dynamicmodels, and conditional plan-

ning with at mostn branches turned on.

Figure 16 shows the results of our experiments comparing these five techniques
for two range queries,[17, 20], and[18, 19]. As we can see, using conditional plans
results in significant improvements for both BBQ-Static and BBQ. Overall, the
performance benefit of conditional planning in the dynamic case is about 35%
at high confidence levels (99.5% and 99%), and about 15% at low confidence
levels (where few observations are made by any of the BBQ approaches.) In the
static case, the performance benefit of conditional planning is about 90% at high
confidence levels, and still only 15% at low confidence levels. The number of
mistakes made by the algorithms is not plotted as it does not change appreciably
as the number of branches is increased, and is typically within the required bounds.

The effectiveness of conditional planning with dynamic models is slightly less
than the improvement gained with static models. The reason behind this is the
strong temporal correlations present in our data. Recall that conditional planning
can result in a smaller number of observations made at any time step compared to
when conditional plans are not used. But when using dynamic models, the extra
observations made by vanilla BBQ reduce the number of observations required in
the subsequent steps. In essence with dynamic models, no observations are fully
useless. In spite of that we see at least a 40% reduction in many of the cases.

6.13.1 Example Plan Figure 17 shows an example of a conditional plan built
over the garden data set. We limited the number of conditioning predicates to 4.
The nodes were distributed as shown in the small tree diagram on the left. In this
deployment, nodes towards the top of the tree (7, 8, 9, and 10) tend to experience
more extreme temperatures – hotter on a sunny day and colder on a cold night, as
they are more exposed to the elements. Similarly, the nodes at the bottom of the tree
are subject to the least extreme conditions. Generally, the variation in temperatures
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Fig. 17 Example of a conditional plan generated by BBQ on the garden data.

between the top and bottom of the tree is less than a few degrees, though on hot
days it can be more than ten degrees. Variance tends to be lower when it is cool,
and higher when it is hot. The query was a range query over temperature of all
attributes, looking for nodes with temperatures in the range [14,18]. In the data
set, temperatures varied from about 7oC to about 30oC.

The first few observations of nodes 10 and 8 are to determine whether all of the
nodes are definitely below or above the query range respectively. In these cases,
query evaluation can be stopped early. Then, the system splits on the value of node
1 decide whether to observe node 10 or node 5 next. If node 1 is reading less
than the mid-point of the query range (16o), the plan observes the value of node
5. If node 5 is also cool, the system has to observe many other sensors, indicating
that at times when a few sensors are cool but not cold, it is approximately equally
likely for sensors to be warmer than 14o as it is for them to be cooler than14o.
When node 5 is relatively warm, nodes 0 and 2 read about the same as node 1
(whose value has already been observed), while nodes 4 and higher read the same
or warmer than 5. Thus, no additional observations are needed to answer the query
with high confidence.

In the case where the reading of node 1 is greater than the midpoint, the system
chooses to branch on the value of node 10 again (at no additional observation cost.)
If node 10 is reading less than the midpoint, then, since it is not cold (based on the
first observation of 10), the temperature is probably relatively constant throughout
the tree, due to the fact that the variance of temperatures is less when it is cool
outside. Thus, since node 1 satisfies the predicate, the probability that all sensors
satisfy the predicate is high. If sensor 10 is hotter than the midpoint, however, ad-
ditional observations are needed, since the temperature varies substantially during
times when sensor 10 is warm.

7 Extensions and future directions

In this paper, we focused on the core architecture for unifying probabilistic models
with declarative queries. In this section we outline several possible extensions.
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Fig. 18 Structure of graphical model learned for the temperature variables for a deployment
in the Intel Berkeley Lab [45].

7.1 Representations for probability distributions

Probabilistic models are the centerpiece of our approach. Choosing the appropriate
representation for a model is very important: the model must allow us to represent
complex correlations compactly, to learn the parameters effectively, and to answer
queries efficiently. The basic Gaussian models used in BBQ are efficient and com-
pact, but many real-world problems may not satisfy the Gaussian assumption. We
are investigating the use ofprobabilistic graphical modelsas a generalization to
the basic Gaussian models that allows us to tackle complex correlation structures
efficiently [46, 13].

In a (probabilistic) graphical model, each node is associated with a random
variable. Edges in the graph represent “direct correlation”, or, more formally, con-
ditional independencies in the probability distribution. Consider, for example, the
sensor deployment shown in Figure 18, where the attributes are the temperatures
in various locations in the Intel Berkeley Lab. The graphical model in Figure 18
assumes, for instance, that temperatures in the right side of the lab are independent
of those in the left side, given temperatures in the center (e.g., T20 andT47 are
independent givenT10, T32, andT33).

The sparsity in graphical models [13] is the key to efficient representation and
probabilistic querying. In discrete settings, for example, a naive representation of
p(X1, X2, . . . , Xn) is exponential in the number of attributesn, while a graphi-
cal model is linear inn and, in the worst case, exponential in the degree of each
node. In addition to reducing space complexity, reducing the number of parameters
can prevent overfitting when the model is learned from small data sets Similarly,
answering a query naively is exponential inn, while in a graphical model the com-
plexity is linear inn and exponential in the tree-width of the graph.

In our setting, in addition to allowing us to answer queries efficiently, graph-
ical models are associated with a wide range of learning algorithms [27]. These
algorithms can be used both for learning a model from data, and to evaluate the
current model, addressing many of the model selection issues discussed above.

Additionally, graphical models allow us to efficiently address hidden variables,
both in terms of answering queries and of learning about hidden variables [19].
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Fig. 19 Bayesian approach for learning the parameter of a coin: (a) prior distribution,
Beta(1,1); posterior distributions over the coin parameter after observing: (b) 1 head, 1
tail; (b) 2 heads, 1 tail; (b) 29 heads, 19 tails.

In the example in Figure 18, each node could be associated with a faulty sensor
hidden variable [36]. When a node is faulty, the sensed value is, for example,
independent of the true temperature. By exploiting correlations in the temperatures
measured by the nodes and sparsity in the graphical model, we can efficiently
answer outlier queries.

Finally, there is vast graphical models literature for addressing other types of
queries and models. For example, these models can be extended to allow for ef-
ficient representation and inference in dynamical systems [9, 15], and to answer
causal queries [47].

7.2 Integrating learning and querying

The BBQ approach described above is a two-phase approach: in the first phase,
we learn the probabilistic model, and in the second, we use the model to an-
swer queries. This is an artificial distinction, raising many questions, such as when
should we stop learning and start answering queries. We can address this issue by
applying aBayesian learningapproach [7].

In a Bayesian approach, we start with aprior distributionp(Θ) over the model
parametersΘ. After observing some value for the attributesx, we use Bayes rule
to obtain aposterior distributionover the model parametersp(Θ | x):

p(Θ | x) ∝ p(x | Θ)p(Θ). (14)

This process is repeated as new data is observed, updating the distribution over
model parameters.
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Consider, for example, the task of learning the parameter of a biased coin;
that is, the coin flips are independently distributed according to the usual bino-
mial distribution with unknown parameter. Typically, for efficiency reasons, we
choose a prior distribution that yields a closed form representation of the posterior
in Equation (14); when such closed-form solutions are possible, the priorp(Θ)
and the likelihood functionp(x | Θ) are said to beconjugate. In our example,
Beta distributions are conjugate to the binomial distribution of the coin. Figure 19
illustrates the process of Bayesian learning for our coin example: We start with the
Beta(1,1) in Figure 19(a); here, the distribution over possible coin parameters is
almost uniform. Figures 19(b)-(d) illustrate the posterior distribution over the coin
parameters after successive observations. As more coin flips are observed, the dis-
tribution becomes more peaked. Thus, when answering a query about the coin
after a few flips, our answer will be uncertain, but after making a larger number of
observations, the query will have significantly lower variance.

These ideas can be integrated with our approach to avoid the need for a sep-
arate learning phase. Consider the Gaussian distributions used in the BBQ sys-
tem. Initially, we may be very uncertain about the mean and covariance matrix of
this distribution, which can be represented by a highly uncertain prior (the conju-
gate prior for the covariance matrix is the Wishart distribution). Thus, when faced
with a query, we will need to observe the value of many sensors. However, using
Bayesian updating, after we observe these sensor values, in addition to answer-
ing the query at hand, we become more certain about the mean and covariance
matrix of the model. Eventually, we will be certain about the model parameters,
and the number of sensors that we will need to observe will automatically de-
crease. This integrated approach achieves two goals: first, the learning phase is
completely eliminated; second, using simple extensions, we can add dynamics to
the parameter values, allowing the model to change over time.

7.3 Long-term query plans

Modeling the correlations between different attributes in the system and also, the
correlations across time, enables the query planner to consider a much richer class
of execution plans than previously possible. We saw in this paper howconditional
planscan be used to exploit the correlations present in the data during execution
of the query plan.

More generally, in continuous queries, additional cost savings can be obtained
by exploiting similarities between queries. For example, if we know that the next
query will require an attribute at a particular nodei, and the current query plan
observes values at nearby nodes, then it is probably better to visit nodei now than
start a new traversal in the next time step.

The optimal solution to such long-term planning problems can be formulated
as aMarkov decision process(MDP) [6, 50]. In an MDP, at each time step, we
observe the current state of the system (in our setting, the current distribution and
query), and choose an action (our observation plan); the next state is then cho-
sen stochastically given the current state (our next query and distribution). Un-
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fortunately, traditional approaches for solving MDPs are exponential in the num-
ber of attributes. Recently, new approximate approaches have been developed to
solve very large MDPs by exploiting structure in problems represented by graph-
ical models [8, 26]. Such approaches could be extended to address the long-term
planning problem that arises in our setting.

7.4 In-network processing

Thus far, we have focused on algorithms where the probabilistic querying task
occurs in a centralized fashion, and we seek to find efficient network traversal and
data gathering techniques. However, in typical distributed systems, nodes also have
computing capabilities. In such settings, we can obtain significant performance
gains by pushing some of the processing into the network.

In some settings, we can reduce communication by aggregating information
retrieved from the network [38, 28]. We could integrate these techniques with our
models by conditioning on the value of the aggregate attributes rather than the sen-
sor values. Such methods will, of course, increase our planning space: in addition
to finding a path in the network for collecting the required sensor values, we must
decide whether to aggregate values along the way.

More recently, a suite of efficient algorithms has been developed for robustly
solving inference tasks in a distributed fashion [25, 45]. In these approaches, each
node in the network obtains a local view of a global quantity. For example, each
node computes the posterior probability over a subset of the attributes given the
sensor measurements at all nodes [45]; or each node obtains a functional repre-
sentation (e.g., a curve fit) of the sensor (e.g., temperature) field [25]. Given such
distributed algorithms, we can push some of the probabilistic query processing
into the network, allowing nodes to locally decide when to make observations and
when to communicate. When integrated with a system like BBQ, these methods
allow the user to connect to any node in the network, which can collaborate with
the rest of the network to answer queries or detect faulty nodes.

7.5 Outliers

Our current approach does not work well for outlier detection. To a first approxi-
mation, the only way to detect outliers is to continuously sample sensors, as out-
liers are fundamentally uncorrelated events. Thus, any outlier detection scheme is
likely to have a high sensing cost, but we expect that our probabilistic techniques
can be used to help detect outlier readings and reduce communication during times
of normal operation, as with the fault detection case.

Though the approach we have described above does not handle outliers, it is
important to emphasize that outlier readings are not the same as low-probability
events that are properly modeled by a probability distribution. For example, in a
Redwood forest, the temperature during most days is relatively cool (about 18◦C).
However, there are some days during the Summer when the temperature can rise to
30◦C or higher. On such days, BBQ will observe the temperature of a few sensors
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and properly predict that many of the sensors are much warmer than usual. BBQ
would not, however, correctly predict the temperature of an “outlier” sensor that
had fallen off the tree and landed on the cold ground on the forest floor.

7.6 Support for dynamic networks

Our current approach of re-evaluating plans when the network topology changes
will not work well in highly dynamic networks. As a part of our instrumentation
of our lab space, we are beginning a systematic study of how network topologies
change over time and as new sensors are added or existing sensors move. We
plan to use this information to extend our exploration plans with simple topology
change recovery strategies that can be used to find alternate routes through the
network.

8 Related work

There has been substantial work on approximate query processing in the database
community, often using model-likesynopsesfor query answering much as we rely
on probabilistic models. For example, the AQUA project [23, 22, 3] proposes a
number of sampling-based synopses that can provide approximate answers to a
variety of queries using a fraction of the total data in a database. As with BBQ,
such answers typically include tight bounds on the correctness of answers. AQUA,
however, is designed to work in an environment where it is possible to gener-
ate an independent random sample of data (something that is quite tricky to do
in sensor networks, as losses are correlated and communicating random samples
may require the participation of a large part of the network). AQUA also does not
exploit correlations, which means that it lacks thepredictivepower of representa-
tions based on probabilistic models. [16, 21] propose exploiting data correlations
through use of graphical model techniques for approximate query processing, but
neither provide any guarantees in the answers returned. Recently, Considineet
al. [35] and Nathet al. [42] have shown that sketch based approximation tech-
niques can be applied in sensor networks.

Work on approximate caching by Olstonet al., is also related [44, 43], in the
sense that it provides a bounded approximation of the values of a number of cached
objects (sensors, in our case) at some server (the root of the sensor network). The
basic idea is that the server stores cached values along with absolute bounds for
the deviation of those values; when objects notice that their values have gone out-
side the bounds known to be stored at the server, they send an update of our value.
Unlike our approach, this work requires the cached objects to continuously mon-
itor their values, which makes the energy overhead of this approach considerable.
Furthermore, this caching approach does not exploit correlation between sensors,
requiring every node that is outside the desired bound to report its value. Our
approach, conversely, uses the probabilistic model to query only a subset of the
sensors. The caching approach does, however, enable queries that detect outliers,
something BBQ currently cannot do. The TiNA system from Beaveret al. [53]
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shows how to apply a technique similar to Olston’s approximate caching in the
context of sensor networks.

There has been some recent work on approximate, probabilistic querying in
sensor networks and moving object databases [10]. This work builds on the work
by Olston et al. in that objects update cached values when they exceed some
boundary condition, except that a pdf over the range defined by the boundaries
is also maintained to allow queries that estimate the most likely value of a cached
object as well as a confidence bound on that uncertainty. As with other approxi-
mation work, the notion of correlated values is not exploited, and the requirement
that readings be continuously monitored introduces a high sampling overhead.

Information Driven Sensor Querying (IDSQ) from Chuet al. [11] uses proba-
bilistic models for estimation of target position in a tracking application. In IDSQ,
sensors are tasked in order according to maximally reduce the positional uncer-
tainty of a target, as measured, for example, by the reduction in the principal com-
ponents of a 2D Gaussian.

Our prior work presented the notion ofacquisitional query process-
ing(ACQP) [39] – that is, query processing in environments like sensor networks
where it is necessary to be sensitive to the costs of acquiring data. The main goal
of an ACQP system is to avoid unnecessary data acquisition. The techniques we
present are very much in that spirit, though the original work did not attempt to
use probabilistic techniques to avoid acquisition, and thus cannot directly exploit
correlations or provide confidence bounds.

BBQ is also inspired by prior work on Online Aggregation [31] and other
aspects of the CONTROL project [29]. The basic idea in CONTROL is to provide
an interface that allows users to see partially complete answers with confidence
bounds for long running aggregate queries. CONTROL did not attempt to capture
correlations between the different attributes, such that observing one attribute had
no effect on the systems confidence on any of the other predicates.

Our idea of conditional plans is quite similar toparametric query optimiza-
tion [34, 24, 12, 20], where part of the query optimization process is postponed
until the runtime. Typically, these techniques choose asetof query plans at query
optimization, and identify a set of conditions that are used to select one of those
plans at runtime. This earlier work differed substantially from ours in two essen-
tial ways: First, in these traditional approaches, the plan chosen at the runtime is
used for executing the query over the entire dataset; thus, even if correlations were
taken into account by these approaches, per-tuple variations, which we have seen
to be prevalent and widely exploitable, could not be accounted for. Secondly, these
approaches did not exploit data correlations while generating the plans.

Adaptive query processing techniques [30] attempt to reoptimize query exe-
cution plans during query execution itself. We believe that the idea of conditional
plans that we propose is both orthogonal and complementary to adaptive query
processing. If sufficiently accurate information about the data is available (as we
assume in this work), then conditional plans can reap many of the benefits of adap-
tive query processing techniquesa priori (by choosing different query plans for
different parts of data). However, in many cases, such information may not be
available, and adaptive techniques must be used. Babuet al. [4] address the prob-
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lem of adaptively orderingpipelined filters(selection predicates) that may have
correlations. Their focus is on finding goodsequentialplans (that may change
with time), and they do not consider conditional plans. Shivakumaret al., [54]
propose using low-cost predicates to avoid evaluating expensive predicates. Their
approach, however, constructs a sequential plan, not a conditional one.

The probabilistic querying techniques described here are built on standard re-
sults in machine learning and statistics (e.g., [51, 41, 13]). The optimization prob-
lem we address is a generalization of thevalue of informationproblem [51]. This
article, however, proposes and evaluates the first general architecture that combines
model-based approximate query answering with optimizing the data gathered in a
sensornet.

9 Conclusions

In this article, we proposed a novel architecture for integrating a database sys-
tem with a correlation-aware probabilistic model. Rather than directly querying
the sensor network, we build a model from stored and current readings, and an-
swer SQL queries by consulting the model. Our approach includes a notion of
conditional plansthat introduce conditioning predicates to determine the best or-
der in which sensor attributes should be observed. In a sensor network, this pro-
vides a number of advantages, including predicting the value of missing sensors
and reducing the number of expensive sensor readings and radio transmissions
that the network must perform. Beyond the encouraging, substantial reductions
in sampling and communication cost offered by BBQ, we see our general archi-
tecture as the proper platform for answering queries and interpreting data from
real world environments like sensornets, as conventional database technology is
poorly equipped to deal with lossiness, noise, and non-uniformity inherent in such
environments.
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