Relational Cloud: the case for Databases as a service

Carlo Curino, Evan Jones,
Yang Zhang, Eugene Wu,
Sam Madden

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA
Relational Database Systems

- Extremely successful data storage and access abstraction
 - Elegant formal framework
 - Market of over 20B$/year

We love databases, but...

Once upon a time, a Startup was founded:

i-slash-my-face-you-go-dig-the-bay-pedia.com
Startup success: a story of DB drama

WE SEE:
- Fun data management problems!

THEY SEE:
- Stressful, non-core-business, technical challenges
- Up-front costs and unpredictable results

- Buy 1st server
- Setup nightly backup
- Hire DBA
- Implement fail-over
- Manual partitioning of DB
- Hire new DBA
- Implement home-made load balancing
- Set up DB snapshots and OLAP functionalities
- Buy 4 more servers
- Slashdotted (4h downtime)
- Foreseen growth
- Need analytics
- Acquire commercial DB and + HW
- Acquire analytical package + HW
- Migrate to new DBMS
- Hire new DBA
- Foreseen growth
- Acquire commercial DB and + HW

WE SEE:
- Fun data management problems!

THEY SEE:
- Stressful, non-core-business, technical challenges
- Up-front costs and unpredictable results

- Buy 1st server
- Setup nightly backup
- Hire DBA
- Implement fail-over
- Manual partitioning of DB
- Hire new DBA
- Implement home-made load balancing
- Set up DB snapshots and OLAP functionalities
- Buy 4 more servers
- Slashdotted (4h downtime)
- Foreseen growth
- Need analytics
- Acquire commercial DB and + HW
- Acquire analytical package + HW
- Migrate to new DBMS
- Hire new DBA
- Foreseen growth
- Acquire commercial DB and + HW

WE SEE:
- Fun data management problems!

THEY SEE:
- Stressful, non-core-business, technical challenges
- Up-front costs and unpredictable results

- Buy 1st server
- Setup nightly backup
- Hire DBA
- Implement fail-over
- Manual partitioning of DB
- Hire new DBA
- Implement home-made load balancing
- Set up DB snapshots and OLAP functionalities
- Buy 4 more servers
- Slashdotted (4h downtime)
- Foreseen growth
- Need analytics
- Acquire commercial DB and + HW
- Acquire analytical package + HW
- Migrate to new DBMS
- Hire new DBA
- Foreseen growth
- Acquire commercial DB and + HW

WE SEE:
- Fun data management problems!

THEY SEE:
- Stressful, non-core-business, technical challenges
- Up-front costs and unpredictable results

- Buy 1st server
- Setup nightly backup
- Hire DBA
- Implement fail-over
- Manual partitioning of DB
- Hire new DBA
- Implement home-made load balancing
- Set up DB snapshots and OLAP functionalities
- Buy 4 more servers
- Slashdotted (4h downtime)
- Foreseen growth
- Need analytics
- Acquire commercial DB and + HW
- Acquire analytical package + HW
- Migrate to new DBMS
- Hire new DBA
- Foreseen growth
- Acquire commercial DB and + HW

WE SEE:
- Fun data management problems!

THEY SEE:
- Stressful, non-core-business, technical challenges
- Up-front costs and unpredictable results

- Buy 1st server
- Setup nightly backup
- Hire DBA
- Implement fail-over
- Manual partitioning of DB
- Hire new DBA
- Implement home-made load balancing
- Set up DB snapshots and OLAP functionalities
- Buy 4 more servers
- Slashdotted (4h downtime)
- Foreseen growth
- Need analytics
- Acquire commercial DB and + HW
- Acquire analytical package + HW
- Migrate to new DBMS
- Hire new DBA
- Foreseen growth
- Acquire commercial DB and + HW

WE SEE:
- Fun data management problems!

THEY SEE:
- Stressful, non-core-business, technical challenges
- Up-front costs and unpredictable results

- Buy 1st server
- Setup nightly backup
- Hire DBA
- Implement fail-over
- Manual partitioning of DB
- Hire new DBA
- Implement home-made load balancing
- Set up DB snapshots and OLAP functionalities
- Buy 4 more servers
- Slashdotted (4h downtime)
- Foreseen growth
- Need analytics
- Acquire commercial DB and + HW
- Acquire analytical package + HW
- Migrate to new DBMS
- Hire new DBA
- Foreseen growth
- Acquire commercial DB and + HW

WE SEE:
- Fun data management problems!

THEY SEE:
- Stressful, non-core-business, technical challenges
- Up-front costs and unpredictable results

- Buy 1st server
- Setup nightly backup
- Hire DBA
- Implement fail-over
- Manual partitioning of DB
- Hire new DBA
- Implement home-made load balancing
- Set up DB snapshots and OLAP functionalities
- Buy 4 more servers
- Slashdotted (4h downtime)
- Foreseen growth
- Need analytics
- Acquire commercial DB and + HW
- Acquire analytical package + HW
- Migrate to new DBMS
- Hire new DBA
- Foreseen growth
- Acquire commercial DB and + HW

WE SEE:
- Fun data management problems!

THEY SEE:
- Stressful, non-core-business, technical challenges
- Up-front costs and unpredictable results

- Buy 1st server
- Setup nightly backup
- Hire DBA
- Implement fail-over
- Manual partitioning of DB
- Hire new DBA
- Implement home-made load balancing
- Set up DB snapshots and OLAP functionalities
- Buy 4 more servers
- Slashdotted (4h downtime)
- Foreseen growth
- Need analytics
- Acquire commercial DB and + HW
- Acquire analytical package + HW
- Migrate to new DBMS
- Hire new DBA
- Foreseen growth
- Acquire commercial DB and + HW

WE SEE:
- Fun data management problems!

THEY SEE:
- Stressful, non-core-business, technical challenges
- Up-front costs and unpredictable results

- Buy 1st server
- Setup nightly backup
- Hire DBA
- Implement fail-over
- Manual partitioning of DB
- Hire new DBA
- Implement home-made load balancing
- Set up DB snapshots and OLAP functionalities
- Buy 4 more servers
- Slashdotted (4h downtime)
- Foreseen growth
- Need analytics
- Acquire commercial DB and + HW
- Acquire analytical package + HW
- Migrate to new DBMS
- Hire new DBA
- Foreseen growth
- Acquire commercial DB and + HW

WE SEE:
- Fun data management problems!

THEY SEE:
- Stressful, non-core-business, technical challenges
- Up-front costs and unpredictable results

- Buy 1st server
- Setup nightly backup
- Hire DBA
- Implement fail-over
- Manual partitioning of DB
- Hire new DBA
- Implement home-made load balancing
- Set up DB snapshots and OLAP functionalities
- Buy 4 more servers
- Slashdotted (4h downtime)
- Foreseen growth
- Need analytics
- Acquire commercial DB and + HW
- Acquire analytical package + HW
- Migrate to new DBMS
- Hire new DBA
- Foreseen growth
- Acquire commercial DB and + HW

WE SEE:
- Fun data management problems!

THEY SEE:
- Stressful, non-core-business, technical challenges
- Up-front costs and unpredictable results

- Buy 1st server
- Setup nightly backup
- Hire DBA
- Implement fail-over
- Manual partitioning of DB
- Hire new DBA
- Implement home-made load balancing
- Set up DB snapshots and OLAP functionalities
- Buy 4 more servers
- Slashdotted (4h downtime)
- Foreseen growth
- Need analytics
- Acquire commercial DB and + HW
- Acquire analytical package + HW
- Migrate to new DBMS
- Hire new DBA
- Foreseen growth
- Acquire commercial DB and + HW

WE SEE:
- Fun data management problems!

THEY SEE:
- Stressful, non-core-business, technical challenges
- Up-front costs and unpredictable results

- Buy 1st server
- Setup nightly backup
- Hire DBA
- Implement fail-over
- Manual partitioning of DB
- Hire new DBA
- Implement home-made load balancing
- Set up DB snapshots and OLAP functionalities
- Buy 4 more servers
- Slashdotted (4h downtime)
- Foreseen growth
- Need analytics
- Acquire commercial DB and + HW
- Acquire analytical package + HW
- Migrate to new DBMS
- Hire new DBA
- Foreseen growth
- Acquire commercial DB and + HW

WE SEE:
- Fun data management problems!

THEY SEE:
- Stressful, non-core-business, technical challenges
- Up-front costs and unpredictable results

- Buy 1st server
- Setup nightly backup
- Hire DBA
- Implement fail-over
- Manual partitioning of DB
- Hire new DBA
- Implement home-made load balancing
- Set up DB snapshots and OLAP functionalities
- Buy 4 more servers
- Slashdotted (4h downtime)
- Foreseen growth
- Need analytics
- Acquire commercial DB and + HW
- Acquire analytical package + HW
- Migrate to new DBMS
- Hire new DBA
- Foreseen growth
- Acquire commercial DB and + HW
WHAT IS WRONG WITH THIS PICTURE?

- HW resources are under utilized:
 - each company does peak-provisioning
 - extra HW for infrequent tasks (e.g., OLAP)
 - low power-efficiency

- Same problems are solved over and over:
 - hw/sw selection
 - configuration and tuning
 - scalability and load balancing
Relational Cloud Vision

• **SOLUTION:**
 - A full-fledged, transactional, relational DB service
 - Hide complexity, exploit resource pooling, increase automation

• **SCENARIOS:**
 - *Private cloud*: consolidating DB resources in large organizations
 - *Public Cloud*: outsourcing of DB functionality to a service provider
 * Extra requirements (pricing scheme, security/privacy, latency)

• **DISCLAIMER:**
 - Everything I will discuss is a Work in Progress!
Relational Cloud Requirements

• User’s perspective
 – Simple SQL API, with near-zero configuration and administration
 – High-performance (e.g., throughput, scalability)
 – High availability and reliability (e.g., hot standby, backup)
 – Ease of access to advanced features (e.g., time-travel, data mining)

• DB service provider’s perspective
 – Meet user service level agreement (under dynamic workloads)
 – Reduce HW and power costs (e.g., via intense multiplexing)
 – Reduce administration costs (i.e., higher automation)
Current Storage Solutions

- **SCALABILITY**
 - Yahoo PNUTS
 - Amazon S3
 - Google App Engine

- **EFFICIENT/LOW-COST**
 - salesforce.com
 - Amazon RDS
 - Microsoft SQL Azure
 - Yahoo (CIDR 2009)

- **GENERAL APPLICABILITY**
 - relationalcloud.com

- **EXPRESSIVENESS/RICH FUNCTIONALITIES**
 - Traditional DBMS
Key Features

• Multiple Storage Engines
 – Specialized engines achieve great performance on specific workloads
 – e.g., column-store for OLAP, main-memory for OLTP

• Intelligent Workload Analysis and Resource Allocation
 – Choose best engine for each workload
 – Optimally allocate workloads to physical resources
 – Co-locate engines that don’t interfere on same machine

• Automatic Partitioning
 – Split databases into partitions to maximize performance

• Live Migration
 – Automatically move partitions in response to load
Automatic Partitioning (for OLTP)

• **Why Partitioning:**
 – Scale beyond a single node
 – Finer grained migration/replication/allocation

• **Problem:**
 – *Partition the database into N chunks that maximize performance of the given workload*
 – e.g., minimize distributed transactions for OLTP, maximize intra-query parallelism for OLAP
 – We focus (for now) on OLTP/Web workloads
Partitioning: our approach

INPUT

- **DB**
- **workload trace**

SCHEMA-AGNOSTIC GRAPH PARTITIONING

- data → nodes
- transactions → edges

PREDICATE-BASED JUSTIFICATION

- classifier
- ID < 7
- ID ≥ 7

- **Schema-Agnostic phase:**
 - build a graph representing the DB and the workload (nodes and edges)
 - Use graph partitioning algorithms to find balanced partition

- **Justification phase:**
 - select common attributes from workload
 - build decision tree classifier to “justify” the partitioning
Partitioning Implementation/Performance

- **Main challenge:**
 - Scalability of the graph representation

- **Solution:**
 - Scalable graph-partitioning algorithms
 - Several heuristics to contain graph size

- **Experiment 1 (easy):**
 - TPC-C workload (10 warehouse scale)
 - Partitioning/replication is indistinguishable from manual selection

- **Experiment 2 (hard):**
 - epinions.com social-network style schema (i.e., multiple n-to-n relationships)
 - System captures intrinsic correlation between data items
 - 28-314% better locality than hash-partitioning
Status

• Current Prototype
 – Many pieces of the infrastructure
 * Distributed Transaction Coordinator (very low-overhead)
 * Query routing component
 * Replication mechanisms
 * Wired-in MySQL and HSQLDB backends
 – Automatic Partitioning/Replication tools

• Investigations
 – Cost of distributed transactions and 2PC
 – Unusual storage engines allocations (main-memory and disk-based)
 – Cache-based approaches to Live Migration
Conclusion

- Databases as a service offer tremendous benefits
 - Reduced administration and hardware costs
 - Elasticity and scalability

We are implementing these ideas and we are interested in your feedback!

http://relationalcloud.com