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Abstract—Data processing systems impose multiple views on data 
as it is processed by the system.  These views include 
spreadsheets, databases, matrices, and graphs.  The common 
theme amongst these views is the need to store and operate on 
data as whole sets instead of as individual data elements. This 
work describes a common mathematical representation of these 
data sets (associative arrays) that applies across a wide range of 
applications and technologies.  Associative arrays unify and 
simplify these different approaches for representing and 
manipulating data into common two-dimensional view of data. 
Specifically, associative arrays (1) reduce the effort required to 
pass data between steps in a data processing system, (2) allow 
steps to be interchanged with full confidence that the results will 
be unchanged, and (3) make it possible to recognize when steps 
can be simplified or eliminated.  Most database system naturally 
support associative arrays via their tabular interfaces.  The D4M 
implementation of associative arrays uses this feature to provide 
a common interface across SQL, NoSQL, and NewSQL 
databases. 

Keywords-Insider; Big Data; Associative Arrays; Spreadsheets; 
Database; Matrices; Graphs; Abstract Algebra 

I.  INTRODUCTION  
As data moves through a processing system the data are 

viewed from different perspectives by different parts of the 
system (see Figure 1). Data often are first parsed into a tabular 
spreadsheet form (e.g., .csv or .tsv files), then ingested into 
database tables, analyzed with matrix mathematics, and 
presented as graphs of relationships. A large fraction of the 
effort of developing and maintaining a data processing system 
goes into sustaining these different perspectives. It is desirable 
to minimize the differences between these perspectives. 
Fortunately, spreadsheets, databases, matrices, and graphs all 
use two-dimensional data structures in which each data element 
can be specified with a triple denoted by a row, column, and 
value. Using this common reference point, many technologies 
have been developed to bridge the gaps between these different 
perspectives. Array programming languages (e.g., Matlab, R, 
and Python) have been the de facto standard for manipulating 
matrices (both dense [Moler 1980, Moler 2008] and sparse 
[Gilbert, Moler & Schreiber 1992]) since the 1990s. These 
languages have had direct support for spreadsheet manipulation 
for nearly as long. An even stronger connection exists between 

spreadsheets and relational databases.  A prime example is the 
SAP enterprise resource planning package (www.sap.com), 
which is the dominant software used for accounting and payroll 
management throughout the world. SAP relies on seamless 
integration between SQL databases and spreadsheets. More 
recently, spreadsheets have incorporated adjacency matrices to 
manipulate and visualize graphs by using their built in scatter 
plotting capabilities [Smith et al 2009]. Perhaps the largest 
recent development has been the introduction of key-value 
store databases [Wall, Cordova & Rinaldi 2013], which are 
specifically designed to store massive sparse tables and are 
ideal for storing graphs. Array store databases [Balazinska et al 
2009] have taken sparse tables a step further by also including 
first-class support of matrix operations on that data. The deep 
connection between graphs and sparse matrices [Kepner & 
Gilbert 2011] has been recognized to such an extent that it has 
led to the development of the GraphBLAS standard for 
bringing these fields together [Mattson et al 2013, Mattson 
2014, Gilbert 2014, Kepner & Gadepally 2014, Buluc et al 
2014]. 

 
Figure 1.  The standard steps in a data processing system often require 
different perspectives on the data. Associative arrays enable a 
common mathematical perspective to be used across all the steps. 

The D4M software system (d4m.mit.edu) [Kepner 2011p, 
Kepner et al 2012] is the first practical implementation of 
associative arrays that successfully bridges spreadsheets, 
databases, matrices, and graphs. Using associative arrays, D4M 
users are able to implement high performance complex 
algorithms with significantly less effort. In D4M, a user can 
read data from a spreadsheet, load the data into a variety of 
databases, correlate rows and columns with matrix operations, 
and visualize connections using graph operations. These 
operations correspond to the steps necessary to build an end-to-
end data processing system. Often, the majority of time spent in 
building a data processing system is in the interfaces between 
the various steps.  These interfaces require a conversion from 
one mathematical perspective on the data to another. By using 
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a common mathematical abstraction across all steps, the 
construction time of a data processing system can be reduced. 

Relational or SQL (Structured Query Language) databases 
[Codd 1970, Stonebraker et al 1976] have been the de facto 
interface to databases since the 1980s and are the bedrock of 
electronic transactions around the world. More recently, key-
value stores (NoSQL databases) [Chang et al 2008] have been 
developed for representing large sparse tables to aid in the 
analysis of data for Internet search. As a result, the majority of 
the data on the Internet is now analyzed using key-value stores 
[DeCandia et al 2007, Lakshman & Malik 2010, George 2011]. 
In response to the same challenges, the relational database 
community has developed a new class of array store 
(NewSQL) databases [Stonebraker et al 2005, Kallman et al 
2008, Lamb et al 2012, Stonebraker & Weisberg 2013] to 
provide the features of relational databases while also scaling 
to very large data sets. 

The diversity of databases has created a need to interoperate 
between them. Associative arrays provide an abstraction that 
works with all of these classes of databases (SQL, NoSQL, and 
NewSQL) and can be bound to database tables, views, or 
queries.  D4M has demonstrated this capability [Wu et al 
2014]. One example where this is useful is in the field of 
medicine, where a SQL database might be used for patient 
records, a NoSQL database for analyzing the medical literature, 
and a NewSQL database for analyzing patient sensor data. 

The success of D4M in building real data processing 
systems has been a prime motivation for formalizing the 
mathematics of associative arrays. By making associative 
arrays mathematically rigorous, it becomes possible to apply 
associative arrays in a wide range of programming 
environments (not just D4M). 

II. ASSOCIATIVE ARRAY INTUITION 
Associative arrays derive much of their power from their 

ability to represent data intuitively in easily understandable 
tables. Consider the list of songs and the various features of 
those songs shown in Figure 2. The tabular arrangement of the 
data shown in Figure 2 is an associative array (denoted A). This 
arrangement is similar to those widely used in spreadsheets and 
databases.  Figure 2 illustrates two properties of associative 
arrays that are different from other two-dimensional 
arrangements of data.  First, each row label (or row key) and 
each column label (or column key) in A is unique, which allows 
rows and columns to be queried efficiently.  Second, 
associative arrays contain no rows or columns that are entirely 
empty, which allows insertion, selection, and deletion of data to 
be performed by associative array addition, multiplication, and 
products.  These properties are what makes A an associative 
array and allows A to be manipulated as a spreadsheet, 
database, matrix, or graph. 

 
Figure 2.  Tabular arrangement of a list of songs and the various 
features of those songs into an associative array A. The array A is an 
associative array because each row label (or row key) and each 
column label (or column key) in A is unique. 

III. MATHEMATICAL OPERATIONS 
Addition, multiplication, and products are the most 

commonly used operations for transforming data and also the 
most well studied mathematically. The first step in 
understanding associative arrays is to define what adding or 
multiplying two associative arrays means.  Addition and 
multiplication of associative arrays have properties that are 
different from arithmetic addition (e.g., 1 + 2 = 3) and 
multiplication (e.g., 2 × 3 = 6). To prevent confusion with 
arithmetic addition and multiplication, ⊕ will be used to denote 
associative array addition and ⊗ will be use to denote 
associative array multiplication. 

Given associative arrays A, B, and C, associative array 
addition is denoted 

C = A ⊕ B 
Associative array addition is equivalent to database table 
insertion in the formula  

T = T ⊕ B 
where T is an associative array that is bound to a database 
table, view, or query.  Associative array element-wise 
multiplication is denoted 

C = A ⊗ B 
Associative array element-wise multiplication is equivalent to 
database table selection in the formula 

C = T ⊗ B 
where C has the elements in T corresponding to the non-zero 
(or non-empty) entries in B.  Associative array (matrix) product 
combines addition and multiplication and is written 

C = A B 
The above product can also be denoted ⊕.⊗ to highlight its 
special use of both addition and multiplication 

C = A ⊕.⊗ B 
or 

C(i,j) = ⊕k A(i,k) ⊗ B(k,j) 
The special case of using associative array products for row 
selection is often denoted by using parentheses 

T(a,:) = A T 
where a are the columns of a permutation array A (see section 
V) that correspond to the rows to be selected from T.  
Likewise, column selection can be denoted 

T(:,b) = T B 
where b are the rows of a permutation array B that correspond 
to the columns to be selected in T. 

One of the most interesting properties of an associative array 
is how sub-arrays are handled. Sub-arrays are extracted using 
ranges or sets of row and column keys.  The row keys and 
column keys of non-empty rows and columns are carried along 
into the sub-array.  Associative arrays also allow the same sub-
array selection to be performed via either element-wise or 
matrix products. The duality between array selection and array 
products allows this operation to be treated in the same manner 
as other algebraic operations. 

Row and column keys are always carried with the 
associative array and the associative array does not hold empty 
rows or empty columns.  Thus, inserting or assigning values to 
an associative array can also be carried out via addition. 

A! Artist Date Duration Genre
053013ktnA1 Bandayde 2013-05-30 5:14 Electronic
053013ktnA2 Kastle 2013-05-30 3:07 Electronic
063012ktnA1 Kitten 2010-06-30 4:38 Rock
082812ktnA1 Kitten 2012-08-28 3:25 Pop
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Products of associative arrays are one of the most useful 
operations in a data processing system. Associative array 
products can be used to correlate one set of data with another 
set of data, transform the row or column labels from one 
naming scheme to another, and aggregate data into groups. 
Figure 3 shows how different musical genres can be correlated 
by artist using associative array matrix products. 

 
Figure 3.  Correlation of different musical genres using associative 
array matrix product ⊕.⊗ 

Associative array addition, element-wise multiplication, and 
matrix product can be defined so that they are algebraically 
correct for spreadsheets, databases, matrices, and graphs.  
Algebraic rigor is what allows associative arrays to be an 
effective tool for manipulating data in a wide range of 
applications. The keys to defining these operations are basic 
concepts from abstract algebra that extend the ideas of addition, 
multiplication, and products to numbers and words. 

IV. FORMAL DEFINITIONS 
Associative arrays are effective because it is possible to 

formally prove that for associative arrays of all shapes and 
sizes that addition, element-wise multiplication, and matrix 
products maintain their desirable algebraic properties [Kepner 
2012, Kepner & Chaidez 2013, Kepner & Chaidez 2014, 
Kepner & Jansen 2015].  Perhaps the most important of these 
properties is coincidentally called associativity, which allows 
operations to be grouped 

(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) 
(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) 

(A B) C = A (B C) 
Associativity enables operations to be executed in any order 
and is extremely useful for data processing systems. The ability 
to swap steps or to change the order of steps in a data 
processing system can significantly simplify its construction. 
For example, if arrays of data are entering a system one row at 
a time and the first step in processing the data is to perform an 
operation across all columns and the second requires 
processing across all rows, this can make the system difficult to 
build. However, if the processing steps are associative, then the 
first and second steps can be swapped, making it much easier to 
build the system. 

V. SPECIAL ARRAYS AND GRAPHS 
The internal structure of the associative array is important 

for a range of applications. In particular, the distribution of 
nonzero entries in an array is often used to represent 
relationships that can also be depicted as points (vertices) 
connected by lines (edges). These diagrams are called graphs. 
For example, one such set of relationships are those genres of 
music that are performed by particular musical artists. Figure 3 
extracts these relationships from the data in Figure 2 and 
displays it as both an array and a graph. 

 
Figure 4.  Relationships between genres of music and musical artists 
taken from the data in Figure 2. The array on the left shows how 
many songs are performed for each genre and each artist. The graph 
on the right shows the same information in visual form. 

Certain special patterns of relationships appear frequently 
and are of sufficient interest to be given names. Modifying 
Figure 3 by removing some of the relationships (see Figure 4) 
produces a special array whereby each row corresponds to 
exactly one column. Likewise, the graph of these relationships 
shows the same pattern, and each genre vertex is connected to 
exactly one artist vertex. This pattern is referred to as a 
permutation. 

 
Figure 5.  Special array and graph whereby each row corresponds to 
exactly one column. This pattern is referred to as a permutation. 

Modifying Figure 4 by adding relationships (see Figure 5) 
produces a special array whereby each row has a relationship 
with every column. Likewise, the graph of these relationships 
shows the same pattern, and each genre vertex is connected to 
all artist vertices. This pattern is referred to as a clique. 

 
Figure 6.  Special array and graph whereby each row has a 
relationship with every column. This pattern is referred to as a clique. 

In addition, to the permutation and the clique pattern, there 
are a variety of other patterns that are important because of 
their special properties. Understanding how these patterns 
manifest themselves in associative arrays makes it possible to 
recognize these special patterns in spreadsheets, databases, 
matrices, and graphs. In a data processing system, recognizing 
that the data is one of these special patterns can often be used 
to eliminate or simplify a data processing step. For example, 
data with the permuation pattern shown in Figure 4 makes it 
very simple to look up an artist given a specific genre or a 
genre given a specific artist. 

VI. NULL SPACE, UNIQUENESS, AND STRETCHING 
In many respects associative arrays are a generalization of 

matrices and inherit many of the useful behaviors that are 
found in matrices. 
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One important property of associative arrays is the 
circumstances under which associative array products will 
produce a result that contains only zeros.  Recognizing these 
conditions can be used to eliminate steps in a data processing 
system.  Formally this is referred to as the null space of the 
matrix. 

Another important property is the conditions under which 
associative array products will produce a result that is not 
unique. If multiplying by certain classes of associative arrays 
always produces the same result, this property can also be used 
to eliminate steps in a data processing system. 

Knowing when associative array products produces a zero 
or unchanging result is very useful for simplifying a data 
processing system, but these situations don’t always occur. If 
they did, associative array products would be of little use. A 
situation that occurs more often is when associative array 
products produces a result that stretches one of the associative 
arrays by a fixed amount. It is often the case that a more 
complex processing step can be broken up into a series of 
simple stretching operations on the data, which can be used to 
simplify a data processing system.  The directions along which 
a matrix will stretch are referred to as the eigenvectors of the 
matrix.  

VII. SUMMARY 
Different steps of a data processing system impose different 

views on the data: spreadsheets, databases, matrices, and 
graphs. The mathematical structure of data has many common 
features. Associative arrays provide a mathematically rigorous 
means for representing data and operations across these steps. 
Associative arrays can be used to swap, reorder, simplify, and 
eliminate steps in a data processing system. 
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