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Abstract— In this paper, we describe a scheme for tolerating
and recovering from mid-query faults in a distributed shared
nothing database. Rather than aborting and restarting queries,
our system, Osprey, divides running queries into subqueries, and
replicates data such that each subquery can be rerun on a
different node if the node initially responsible fails or returns too
slowly. Our approach is inspired by the fault tolerance properties
of MapReduce, in which map or reduce jobs are greedily assigned
to workers, and failed jobs are rerun on other workers.

Osprey is implemented using a middleware approach, with
only a small amount of custom code to handle cluster coordi-
nation. Each node in the system is a discrete database system
running on a separate machine. Data, in the form of tables,
is partitioned amongst database nodes and each partition is
replicated on several nodes, using a technique called chained
declustering [1]. A coordinator machine acts as a standard SQL
interface to users; it transforms an input SQL query into a set of
subqueries that are then executed on the nodes. Each subquery
represents only a small fraction of the total execution of the
query; worker nodes are assigned a new subquery as they finish
their current one. In this greedy-approach, the amount of work
lost due to node failure is small (at most one subquery’s work),
and the system is automatically load balanced, because slow nodes
will be assigned fewer subqueries.

We demonstrate Osprey’s viability as a distributed system for
a small data warehouse data set and workload. Our experiments
show that the overhead introduced by the middleware is small
compared to the workload, and that the system shows promising
load balancing and fault tolerance properties.

I. INTRODUCTION

Most existing distributed database systems handle node
failures during query execution by aborting the query and
(possibly) restarting it. This is a perfectly reasonable approach
for very short OLTP-style queries, but for longer running
analytical (OLAP) warehouse queries that may run for minutes
or hours, running on large clusters of machines where faults
may be common, it is highly preferable to be able to avoid
re-running queries from the beginning when a node fails.

To illustrate the problem, consider a shared-nothing dis-
tributed data warehouse that runs a series of 6 reports every
day. Suppose each report takes 3 hours to generate on a 100
node database with 800 disks (anecdotally, 100 nodes are

about the size of the largest Teradata clusters1; vendors like
Netezza sell clusters with as many as 1800 nodes). Suppose
that the OS on a single node crashes once every 30 days
(once every 8 × 30 reports, since each report runs for 1/8th
of day), and that a single disk fails once every 2 years (once
every 8× 365× 2 reports). Then, the probability that no node
fails while a query runs is (1 − 1

8×30 )100 = 65%, meaning
that there is a 35% chance that a crash will occur during a
given report query, wasting 1.5 hours of work on average
on each crash. Such wasted work likely means that some
reports will not be generated that day, or that the warehouse
won’t be able to load all of that day’s data during the six
hours of downtime while not generating reports. Similarly,
there is a 1 − (1 − 1

8×365×2 )800 = 13% chance that a disk
fails while a query is running. While real systems may have
different numbers of disks or CPUs, and failure rates may
vary somewhat (in particular, disk storage system vendors go
to great lengths to hide the failures of individual drives), it
is clear that as database clusters get larger, a way to restart
queries mid-flight will be important in order for warehouses
to handle their daily loads.

To address this problem, we have built a distributed shared-
nothing database system, called Osprey, that provides the
ability to detect and to recover from failures (or slow nodes)
in long-running queries. Osprey uses a middleware approach,
where a central coordinator dispatches work-units (in the form
of query fragments) to workers. Each worker is simply an
unmodified DBMS (in this case, Postgres). Data is partitioned
amongst workers, and each partition is replicated across sev-
eral nodes, using a technique called chained declustering [1],
which limits data unavailability due to machine failures. The
coordinator runs our custom middleware code while presenting
a standard SQL interface to users. Users input a SQL string,
which the coordinator transforms into a set of subqueries
that the workers execute. Typically, a single input query is
broken into hundreds or thousands of subqueries, depending
on how the tables of the database are partitioned. The system
is naturally load balanced and fault tolerant, because slow (or

1http://www.dbms2.com/2009/04/30/
ebays-two-enormous-data-warehouses/



dead) machines will receive fewer subqueries to execute while
fast machines will do relatively more. We explore a range of
techniques to schedule subqueries amongst workers, including
techniques to reassign slow workers’ jobs to faster workers so
the query finishes as quickly as possible.

Our approach is loosely inspired by the approach taken by
MapReduce [2], where map and reduce jobs are run on a set
of worker nodes by a scheduler. When one worker fails (or
slows), its jobs are rescheduled on another worker, allowing
that task to complete without restarting. Unlike MapReduce,
Osprey does not rely on a distributed file system like GFS, but
uses chained declustering to ensure data is available on one
or more replicas. Also, unlike MapReduce, our system runs
general SQL queries rather than simple MapReduce jobs.

In summary, the major contributions of this work are as
follows:
• We describe how to decompose data warehouse queries

into sub-queries of relatively large size that can be ex-
ecuted by our middleware-based job scheduler, enabling
mid-query restartability and adaptation to slow nodes.

• We show that chained-declustering is an effective tech-
nique for replicating data in this setting.

• We investigate several different job-scheduling techniques
for jobs in this context.

• We show that the overall approach taken in Osprey is able
to achieve linear-speedups (a factor of 9.7× on an 8 node
cluster on the SSB [3] data warehousing benchmark) on
a parallel cluster while simultaneously adapting to slow
or overloaded nodes.

The remaining of the paper is organized as follows: Sec-
tion II describes related work. Section III provides a high-
level view of the design of the system, as well as our specific
strategies for job scheduling and load balancing. In Section IV,
we present results, which demonstrate the viability of our
middleware approach and also promising load balancing and
fault tolerance properties of the system. Finally, we discuss
the implications of our system and possible future work in
Section V.

II. RELATED WORK

Osprey is related to several existing projects, which we
describe here.

A. MapReduce

MapReduce is Google’s distributed solution for web-scale
data processing [2]. MapReduce automatically parallelizes
programs to run on a cluster of commodity hardware. This
automation comes at the cost of the expressiveness of the input
program. Programs are written as map functions, reading in
an individual item in the original data set and outputting an
intermediate tuple, and reduce functions, which merges the
intermediate tuples created by the map step into the final
output. All map operations can be performed in parallel, and
all reduce steps run in parallel (after the map phase has
completed).

Because it is designed to be run on a cluster of commodity
hardware (where disparities in processing power and availabil-
ity are potentially drastic), MapReduce employs two strategies
for load balancing and fault tolerance. (1) Worker nodes are
assigned map and reduce tasks as quickly as they finish them,
in a so-called “greedy” fashion. This leads to natural dynamic
load balancing properties, as slow machines will be assigned
less work as they complete tasks more slowly. Fast machines,
in contrast, will be assigned more work as they finish their
tasks relatively quickly. (2) Minimize the effect of “straggler”
machines (degenerately slow workers) by re-executing tasks,
which was shown to drastically shorten the total execution
time of a job [2]. MapReduce uses the Google File System
(GFS) to distribute the original data and intermediate results
amongst the cluster machines.

Osprey is similar to MapReduce in that they are both
designed to run on clusters of heterogeneous hardware per-
formance. It adapts the MapReduce strategy of parallelization
by breaking up a program (or SQL query) into smaller, par-
allelizable subqueries. Osprey also adapts the load balancing
strategy of greedy assignment of work.

However, Osprey differs fundamentally from MapReduce
in that Osprey is designed as a SQL system from the ground
up. While there are some similarities between the MapReduce
programming model and the limitations Osprey places on
SQL queries, we retain the declarative style of SQL. Osprey’s
middleware approach means that we get low-level SQL query
optimizations for free – clustering of tables, indexes on com-
monly used fields, statistics on data distribution, and integrity
constraints between tables can take advantage of patterns in
the data that an imperative style like MapReduce would be
hard-pressed to duplicate manually.

B. MapReduce in Databases

Two commercial database systems have emerged that
retrofit MapReduce functionality into existing database sys-
tems. Greenplum transforms MapReduce code into a query
plan that its proprietary distributed SQL engine can execute on
existing SQL tables [4]. Aster implements something similar,
where MapReduce functions can be loaded into the database
and invoked from standard SQL queries in Aster’s distributed
engine [5]. To the best of our knowledge, neither of these
systems implements MapReduce-style fault recovery.

HadoopDB shares our middleware approach, similarly using
PostgreSQL servers in their database layer, but uses Hive
and Hadoop for query transformation, job scheduling and
replication [6]; Osprey uses chained-declustering replication
and our own scheduling methods. BOOM [7] attempts to graft
a declarative language over a MR framework, but does not use
a middleware approach or even use SQL.

C. Middleware

Kemme, Patiño-Martı́nez, and Jiménez-Peris have done
much work in data replication in middleware approaches [8],
[9], [10], and have focused on efficient ways to keep replicas



synchronized. Their approaches to fault tolerance are funda-
mentally different from Osprey. In [9], replicated standbys are
brought online as machines fail, which is very different from
Osprey’s dynamic approach to fault tolerance. Furthermore,
our approach allows long-running queries to finish, despite
individual worker failure. In a replica-based recovery scheme,
queries would have to be re-executed in the case of failure [9].

Osprey does share the idea of creating a client-transparent
database using a middleware approach, with Pronto [11] and
Lin et al. [9].

D. Chained Declustering and Dynamic Load Balancing

Osprey replicates data using a technique called chained
declustering [1], which was created by Hsiao and DeWitt
for use in Gamma, a distributed shared-disk database [12].
Chained declustering provided better data availability than
other strategies (such as RAID and Teradata’s replication
strategy [1]), and offered a static load balancing strategy for
machine failure.

Golubchik et al. [13] adapted the chained declustering load
balancing to a dynamic setting, presenting two scheduling
algorithms that Osprey adapts. Their analysis of their schedul-
ing algorithms was in the context of scheduling blocks to
read from shared disk controllers, and the performance results
of their schedulers was only a simulation. A more thorough
discussion of chained declustering and Golubchik et al.’s
dynamic schedulers is presented in Section III-D.1.

III. OSPREY

Osprey’s approach to fault-tolerant distributed query execu-
tion employs three key ideas:
• Its middleware approach allows us to cleanly separate

the low-level components (the actual execution of SQL
queries) from higher level fault-tolerance concerns;

• Fault tolerance is enabled by replicating data using
chained declustering, and partitioning each query into a
number of subqueries, each of which can be executed
independently on one or more replicas. A coordinator
node keeps track of which chunks are still outstanding
and allocates chunks to workers.

• Load balancing is achieved via a dynamic scheduler.
Osprey implements three subquery schedulers, whose
performance we compare in Section IV.

Before describing the system in detail, we note a few
assumptions that we made in building Osprey:
• Data warehouse workload. Osprey is designed for data

warehouse applications. We have assumed that the tables
are arranged in a star schema, with any number of dimen-
sion tables and a single fact table, typically many orders
of magnitude larger than any of the dimension tables. We
make this assumption because we feel that warehouse
systems are the most likely to benefit from the types
of fault tolerance techniques we discuss; transactional
systems are unlikely to need mid-query fault tolerance,
as queries are typically very short. We note that this

workload is what the initial versions of the data ware-
housing products from many commercial data warehouse
vendors (e.g., Netezza and Vertica) supported; Vertica,
for example, did not support non-star schema joins until
version 2 of their database was released, and was still
successful in making large sales to many customers. We
briefly discuss how we might extend Osprey to handle
more general long-running query workloads (for example,
with multiple large tables) in Section III-G below.

• Read-only, long-running deterministic query workload.
The scheduling schemes presented here assume that
queries run for long enough to justify the overhead of a
load balancing strategy. We also assume that there are few
on-line updates, with the bulk of new rows coming into
the database via large batch updates, which is consistent
with a warehouse workload. Finally, we recognize that
non-deterministic queries would not behave correctly in
Osprey, and that our assumed data warehouse workload
contains only deterministic queries.

• Heterogeneous load on cluster machines. We assume that
machines in the system do not all perform identically.
This is consistent with Google’s commodity hardware
approach to distributed systems [2], but is also consistent
with many other real world possibilities: machines of
different age, machines that are loaded by other queries
or non-database work, etc. We show that Osprey performs
quite well in such an environment.

In the remainder of this section, we present the details of
Osprey’s design, in five parts. First, we give a brief overview
of the architecture. Next, we discuss the data model, and
then the query workload that we the system is optimized
for, third. Fourth, we discuss our scheduling and backup
schemes. Finally, we end with a short sample query execution
walkthrough, and a discussion of how to generalize Osprey to
more complex query workloads.

A. Architecture

An Osprey cluster is composed of a coordinator and n
workers. The coordinator presents a SQL interface to users
(queries that Osprey cannot execute are rejected – see Section
III-C.1). The coordinator runs the Osprey middleware – work-
ers are off-the-shelf, unmodified database servers (Postgres,
in our case). Only the coordinator runs custom code. Workers
and coordinator are assumed to be physically distinct systems.
Figure 1 summarizes the cluster layout.

The basic operation of the system is as follows: When the
coordinator is asked to compute a query, it spawns a new
query manager thread. The query manager is responsible for
coordinating the workers to finish a given query. It implements
a scheduler protocol, handing out chunks to process to each
worker thread. The individual job is responsible for translating
the SQL it was given by the coordinator into SQL appropriate
to run directly on the worker. The query manager also marshals
the intermediate results from each chunk from each worker,
merging the results (and doing any appropriate aggregation
processing) for the coordinator to return to the user.
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Fig. 2. Using chained declustering to replicate the partitions A, B, C, D with
a backup factor of k = 1. Data is unavailable only if k+1 adjacent machines
simultaneously fail. Here we show each partition with m = 2 chunks each.
Bold indicates partitions for which a worker is the primary.

There are n worker threads running on the coordinator
machine, corresponding to n external database servers. Each
worker is allowed to run an arbitrary number of queries at a
time, although in practice, we limited this number to be small.

B. Data Model

As stated above, Osprey assumes a star schema for the
database tables, where a fact table is related to several di-
mension tables. The fact table is assumed to be much larger
than the dimension tables combined.

For a cluster of n worker machines, we use a hash par-
titioning scheme to divide the fact table into n partitions.
These n partitions are replicated k times (for a total of k + 1
copies) onto k worker machines using chained decluster-
ing [1]. Chained declustering works as follows: Partition i is
stored on Worker i. The k backups of Partition i are stored
on workers i + 1, . . . , i + k (modulo the number of machines
n). Figure 2 shows how chained declustering backs up the
partitions A,B, C, and D with a backup factor of k = 1.

The partition and its backup form a “chain” in the system –

the partition is only unavailable if workers i, . . . , i + k all si-
multaneously fail. If a worker fails with probability p and if the
failure of a worker in the system is an independent event, then
the probability that a particular k+1 machines simultaneously
fail (and thus a particular partition is unavailable) is pk+1. This
analysis also suggests machines adjacent in the “chain” should
not share external resources, such as power source or network
switch, lest a single failure in a common resource “break” the
chain. Google’s GFS takes similar precautions, preferring to
keep backups of data off the same power grid or network as
the primary [14].

Each partition is further segmented into m chunks in a
round-robin fashion. Chunks are stored physically as tables
in SQL server tables on worker machines. Each is identified
by a globally unique table name, comprised of the base
table name, parent partition, and chunk number. For example,
Chunk 1 of Partition 2 of the lineorder table is named
lineitem 2 1.

Dimension tables are replicated in full on each worker
machine’s database, as they are assumed to be small relative
to the size of the fact table (Section III-G discusses how we
can relax this limitation.)

C. Query Model

Partitioning the fact table into chunks lets us parallelize a
query that runs over the entire fact table. With only slight
modification to the original user query, we can compute the
result of that original query by substituting the chunk for the
fact table, and combining the results of all chunk subqueries.
We describe how Osprey modifies user queries and assigns the
execution of those subqueries here.

1) Query Transformation and Result Merging: Osprey
transforms a user query into a set of subqueries that can be
run in parallel on each of the workers. Because the fact table is
partitioned across machines, Osprey can only execute queries
in which the fact table appears exactly once in the FROM
clause. There are no restrictions on the type of aggregation
or filtering used – merely that self-joins are disallowed.
Dimension-only queries are trivially executed in Osprey –
the coordinator randomly chooses a worker to execute the
unmodified query and returns the results.

A prototypical query might look like this:
select partnum, partname
from facttable, dim1, dim2, dim3
<...join conditions...>
where partnum between 0 and 10

Notice that the result of running this query could be computed
as the union of the results of running queries of the form

select partnum, partname
from facttable_chunkX, dim1, dim2, dim3
where partnum between 0 and 10

where facttable chunkX represents the set of all
horizontally-partitioned chunks of the fact table. Chunks are
physically stored on workers as full SQL tables, so the query
transformer simply replaces the name of the fact table with



the chunk table name to create the subqueries. This set of
queries can be run in parallel without affecting correctness of
the result.

Osprey’s query transformer breaks up a user’s query into
these smaller subqueries; the results merger combines the
results of the subqueries to form the final query result. These
steps are trivial for user queries that are simple filters and
selects, but queries that involve grouping and aggregation
require some care.

Consider a query that involves aggregation:
select partnum, count(partnum), min(price)
from facttable, dim1, dim2, dim3
<...where conditions...>
group by partnum

The query transformer can pass through this original query
and substitute facttable for the names of the chunks. The
results of these individual subqueries may look like this:

chunk partnum count(partnum) min(price)
1 1006 20 425
2 1006 54 318

As in distributed databases that perform partial preaggrega-
tion [15], another aggregation is necessary to compute the final
aggregate. In particular, the results merger must (1) group on
partnum, (2) sum the subquery field count(part-num)
to obtain the true count for part number 1006, and (3) take the
minimum of partprice to find the true minimum for the
part number. Aggregates like counting, minimum/maximums,
and summing, can be dealt without requiring additional data;
Gray et al. termed these aggregates as distributive func-
tions [16].

Averaging over a column, say:
select partnum, avg(partprice)
from facttable, dim1, dim2, dim3
group by partnum

requires the query transformer to modify the original query
slightly. We clearly cannot average the averages from each
subquery directly, but we can compute the true average by
having subqueries return the sum and count of the averaged
column:

select partnum, sum(partprice),
count(partprice)

from facttable_chunkX, dim1, dim2, dim3
group by partnum

The result merger simply computes the average of
partprice by summing over sum(partprice) and
count(partprice) from each subquery and dividing. Ag-
gregating functions like averaging are algebraic functions [16],
and can all be dealt with in a similar fashion.

Osprey’s behavior can be summarized as follows: (1) sub-
queries are generated by replacing the fact table name with
the name of the chunk, (2) GROUP BY fields and WHERE
clauses are passed through unmodified, (3) average aggregates
are replaces with sums and counts, and (4) result from each
subquery are combined by the results merger, either as a union
of result rows (if no aggregation is present) or as an aggregate
the result rows (as described above).

Clearly, the above decomposition process doesn’t support
all types of queries (e.g., complex nested queries), but it is
compatible with a large class of useful queries. Some more
complex expressions – like nested queries or self-joins – might
require redistribution of data mid-flight, which we do not cur-
rently support (see Section III-G for a discussion of how to add
support for such queries.) MapReduce has similar limitations
(it can redistribute data mid-flight, but requires the execution
of another MR job); the restrictions we place on queries
provide a programming model with similar expressiveness to
its map and reduce functions. However, Osprey retains all of
the advantages of DBMS’s over MapReduce (e.g., indexing,
schema management, crash recovery).

2) Update Queries and Transactional Processing: Osprey,
as it is currently implemented, deals with read-only queries.
As it does not deal with updates, our implementation omits
any transactional machinery entirely. We felt this was an
acceptable limitation as data warehouses traditionally bulk
load data in a process usually requiring a temporary halting of
query capabilities – already implemented in Osprey. Providing
support for online updates, insertions, and deletions is not
theoretically difficult but is not implemented because this
capability was not needed for the benchmarking. We propose
a possible implementation of write capability here.

The basic idea for update and deletion queries is to trans-
form them into subqueries (using the same approach as for
read-only queries) and issue them against each of the chunks
on each of the database server instances on the worker nodes.
To ensure that such updates are done transactionally, two-
phase commit is needed. Postgres does support external two-
phase commit, which should make this feasible.

For inserts, a single chunk of a single node is selected at
random and the results are added to that chunk. If the database
grows substantially, it may be necessary to divide some chunks
into smaller ones.

Finally, to prevent running queries from seeing new data
added during query execution, it would be necessary to run
read-only queries over many chunks as a part of a two-
phase commit transaction. Providing this level of isolation may
not be necessary in many warehousing settings where large
analytical queries are unlikely to be affected by one or two
additional (or missing) results.

D. Subquery Execution Scheduling

While the chunks can be executed in parallel, the number
of chunks (and thus subqueries) far exceeds the number of
workers, so Osprey must schedule the execution of those sub-
queries to minimize the total runtime of the query, in the face
of dynamically changing loads on the worker machines. Job
scheduling in distributed systems is a well-studied problem;
an overview of scheduling in general is beyond the scope
of this paper, but we have implemented three straightforward
scheduling algorithms in Osprey that we describe here.

1) Load Balancing Through Greedy Workers: Partitions
(and thus chunks) and their backups are distributed amongst
the workers using chained declustering. Hsiao and DeWitt
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Fig. 3. Each worker can execute subqueries from one of two partitions. Ai

represents the ith chunk of Partition A. Here we show a cluster of n = 4
workers with a backup factor of k = 1. Osprey uses a variety of scheduling
algorithms to assign PWQ subqueries to workers.

recognized the use of chained declustering for load balancing
under disk loss [1]; Golubchik et al. showed how chained
declustering could be used for dynamic load balancing of
shared disk controllers [13], and demonstrated their results
through several simulations.

The basic idea is that a slow-down (or failure) of one disk
can be compensated by its neighbors in the “chain.” Those
neighbors, in turn, are compensated for by their neighbors
– thus, the load is balanced across all workers. We have
adapted chained declustering and Golubchik’s schedulers to
work within Osprey’s architecture.

In general, not every worker necessarily has access to all
partitions – so each can only execute subqueries on chunks of
partitions that it is storing locally. Osprey groups subqueries of
chunks by partition, forming partition work queues (PWQs).
For n workers, there are n partitions and thus n PWQs. Figure
3 shows the PWQs for a cluster of n = 4 machines, with a
backup factor of k = 1. In this figure, each worker thread has
two PWQs available from which it can pull subqueries. PWQs
for each partition are maintained by the coordinator.

Workers are assigned a new subquery by the coordinator as
soon as they finish processing their current query – we call
this the greedy worker approach. Dynamic balancing arises
naturally using such an approach because slow (or dead)
workers will execute their subqueries more slowly and will
thus execute fewer subqueries overall.

2) Subquery Scheduling: The PWQ that workers are as-
signed tasks from is chosen by a scheduling algorithm. We
have implemented three:

1) Random. A PWQ is randomly chosen.
2) Longest Queue First (LQF). The PWQ with the most

unexecuted subqueries is chosen. This is a good intu-
itive heuristic for minimizing the overall time to finish
the execution, although [13] showed that LQF is not
optimal.

3) Majorization. A faster scheduling algorithm uses the
idea of vector majorization – we interpret the number of
subqueries left to be executed in the PWQs as a vector.
Majorization essentially tries to minimize the difference
in PWQ lengths – occasionally choosing a job from the
shorter PWQ “for the greater good,” or to help another

A1 B1 C1

PWQA PWQB PWQD PWQAPWQC
D1 A1

B2

B3

B4

D2

W1 W2 W3 W4
L(W1)=5 L(W2)=5 L(W3)=3 L(W4)=3

Fig. 4. A constructed situation with worker W3 about to be scheduled. L(W)
represents the number of jobs available to worker W. LQF would assign job
D2 to W3, as D is the longer of the two queues. Majorization, however, would
assign W3 C1 in order to lighten the load on W2 from five remaining jobs to
four. Golubchik showed that majorization could provide a 19% speedup over
LQF.

worker that may be further behind. Golubchik et al.
describes majorization in greater detail and shows that
it outperforms LQF by as much as 19% in a simulation
study [13]. Figure 4 shows an example.

As subqueries are assigned to workers, the coordinator
marks them as assigned and removes them from the queue.
When the worker completes the subquery, it returns the result
to the coordinator, who marks the subquery as complete. If
the PWQs a worker can be assigned work from are all empty,
the worker will re-execute an already-assigned subquery that
another worker with which it shares a PWQ has not finished.
Like MapReduce, Osprey uses re-execution to minimize the
effect of “straggler” workers (that are executing much slower)
and failed workers [2].

E. Execution Overview

In this section, we briefly summarize the execution of a
query in Osprey. Figure 5 shows this in diagram form.

1) Osprey receives a query from the user. The query
transformer converts this query into a set of subqueries.
Partition work queues are created, one per partition. The
subqueries are added to these PWQs.

2) While the PWQs are not empty, we attempt to schedule
a subquery for each worker:

a) The query manager cycles through all workers,
looking for one not already running a subquery
(available). Workers are pinged to see if they are
still up – if a worker fails to respond to the ping,
it is marked as down and will not have subqueries
assigned to it until it responds to a subsequent ping.

b) The scheduling algorithm assigns workers an out-
standing subquery to execute. The subquery is
marked as assigned and removed from its PWQ.

c) The worker passes the subquery to its database
server instance to execute. The results of this
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Fig. 5. Upon a query’s arrival, Osprey’s query transformer divides it up into
its respective subqueries, which are then added to the appropriate PWQs. The
scheduler assigns outstanding subqueries to available workers (not shown).
After the workers execute the queries, results are collected, merged, and finally
returned to the user.

query are asynchronously passed back to the query
manager. The subquery is marked as complete.

3) Once all subqueries have been completed, the results
merger combines the subquery results and returns the
result to the user.

F. Failure Modes

Failure of the coordinator is a possibility that Osprey does
not currently deal with. A checkpointing scheme, where the
coordinator persists the subquery results as they come in,
has been designed, but we did not describe it because it has
not yet been implemented as of the time of the paper. Note
that checkpointing at level of worker nodes is not necessary
because each worker is essentially stateless: a worker can
forget about subqueries it has already finished, and any failure
during the execution of a subquery will be recovered by the
coordinator simply reassigning the task. Note that MapReduce
also doesn’t support recovery from Coordinator failures.

Because all queries pass through the coordinator, there is
a possibility of the coordinator being a bottleneck on query
performance. This can occur in two ways: (1) in coordination
of the execution of subqueries on the cluster (the workers
finish executing tasks faster than the coordinator can assign
them or faster than the coordinator can receive them), and (2)
the coordinator could be overwhelmed in the task of merging
results. We doubt that (1) is a real risk because we expect the
assignment of subqueries to be much, much faster than their
execution. (2) is potentially a risk, though we assume that
subquery responses return few rows (i.e. analytic type queries

where pre-aggregation can be pushed down to the workers
as we do). If this assumption holds (and our benchmark
workloads suggest this is true), this possibility is limited.

We extensively test Osprey and show the results in Sec-
tion IV; first we discuss how to extend the above execution
model to support more general join queries.

G. General Join Queries

Our current implementation of joins in Osprey is limited in
that we require that dimension tables be replicated at all nodes.
To support queries between dimension tables that do not fit on
a single node, or more complex non-star schema joins, some
additional mechanism is necessary. We sketch two possible
approaches here, similar to those taken in early distributed
databases like Gamma [12] and R* [17]. We include these
schemes for completeness, but do not evaluate or describe all
of the details of these approaches due to space constraints, and
because we feel that basic star-schema joins with relatively
small dimension tables are the common cases in most data
warehouse settings.

To allow dimension tables to be partitioned rather than
replicated, several strategies are possible. If the both tables
are partitioned on the join attribute, then the strategy de-
scribed above will simply work, since each node will have
the dimension partition that contains exactly those tuples
that join with its fact partition. When the fact table is not
properly partitioned, one possible strategy is to use IN-
list rewriting, which is similar to the semi-join technique
discussed in the R* paper [17]. The idea is as follows:
for each chunk of the fact table stored at a node, run a
subquery against the dimension table partitions at each of the
remote nodes to return the attribute values from the dimension
table needed to compute the join. This subquery includes
a clause of the form WHERE dimension-join-attr
IN {value-list}, where value-list is the list of
dimension values that are in the chunk of the fact table
needed to answer the query. For example, if a node N
is running the query SELECT d1.attr FROM fact,d1
WHERE fact.fk1 = d1.pk AND p against its local
fact partition, it would first build value-list by running
the query SELECT fk1 FROM fact WHERE p. Then it
would run the query SELECT attr FROM d1 WHERE pk
IN {value-list} on each of the remote nodes and store
these results in local temporary tables. Finally, N would
compute the final answer to the query by running a local join
between its fact partition and each of these temporary tables.
In this way, each of the fact table chunks on a node can be
processed independently, just as in the preceding sections.

An alternative to IN-list rewriting which may be useful
for some general join queries between two large tables is
dynamic rechunking, similar to dynamic hash repartitioning
in Gamma [12]. In this strategy, a new set of chunks is
computed on one of the two tables being joined (most likely,
this should be the smaller table). Rather creating these new
chunks using round-robin partitioning of the tuples on that
node, these chunks are computed by hashing over the join



var purpose
n total number of workers
m number of chunks per partition
k number of backups per partition
l number of workers artificially stressed
s stress factor (on scale 0-3)

TABLE I
OSPREY SYSTEM PARAMETERS.

attribute. Then, these new chunks can copied one-at-a-time
to the other node, which can compute the join as in IN-
list rewriting. This strategy has the disadvantage that creating
the new chunk tables may be slow, but is superior to IN-list
rewriting because each tuple from the re-chunked table is sent
over the network only once. These new chunks can be used
in place of the previous improperly partitioned chunks as long
as they are not too highly skewed in size.

Of course, as in traditional distributed databases, when this
kind of repartitioning is necessary, it is higher overhead than
when joins are properly pre-partitioned. Note, however, that
some degree of parallelism is still achieved, as each node can
process these subqueries in parallel. Executing such reparti-
tioning joins through a middleware layer is one case where
Osprey will likely perform worse than a non-middleware
implementation of a distributed database, which can pipeline
the flow of tuples from remote sites into local join operators
without materializing intermediate results into temporary ta-
bles. An implementation of Osprey-like techniques inside of
a database (rather than in middleware) would be able to take
advantage of this kind of pipelining.

IV. PERFORMANCE EVALUATION

Osprey was tested using a data warehouse running on the
SSB benchmark [3]. Testing for Osprey breaks down into two
suites: system-level tests, to demonstrate the scalability of the
system, and load balancing tests, to test our fault tolerance
claims.

We first explain our experimental setup and the test data
and workload. We then present scalability results, followed by
load balancing results.

A. Experiment Setup

We use several parameters (shown in Table I) to explore the
performance of Osprey. The stress factor l and s are discussed
further in Section IV-A.5.

In addition to system properties like those listed above, we
chose to vary the set of queries run. In most cases, we run the
full set of 13 SSB queries; in some others, however, shorter
representative sets of queries were run instead.

1) Platform: We ran Osprey across a network of 9 com-
modity workstations – 1 coordinator machine and 8 workers.
Each contains two Intel Pentium 4 3.06 GHz CPU, 2 GB of
main memory, and Debian 4.0, Linux kernel 2.6.27-9-server.
Each machine ran a remotely-accessible Postgres 8.3 server,
with a limited buffer pool (512 MB) to help limit the effect of
caching. All machines were connected via a gigabit-Ethernet
switch.

2) SSB Test Data: Our experiments used the Star Schema
Benchmark, Scale Factor 10; SSB is a derivative of TPC-
H2 [3]. The fact table in SSB is lineorders (a merging
of TPC-H’s lineitem and orders tables). Osprey horizon-
tally partitions this fact table and distributes it to workers. SSB
also includes 4 dimension tables. SSB specifies no indexes
or integrity constraints on the database besides identifying
primary keys on the dimension tables. We discuss our indexes
used in the test cases more completely in Section IV-A.4.

SSB (and, in turn, TPC-H) is not the most general schema
or query workload, but is designed to represent typical data
warehouse demands – TPC-H is the most widely used data
warehousing benchmark. Our assumptions about the selec-
tivity of filters of the queries (see Section III-F) and our
fact-table based approach were sufficient for SSB, which is
suggestive that Osprey’s query and schema restrictions are not
too limiting to the applications for which it was designed.

We used SSB to generate 5.5 GB of data: a fact table
of 5.4 GB (60,000,000 tuples), and dimension tables totaling
105 MB.

3) Query Workload: The full set of SSB queries consists
of four “query flights,” of three to four queries each, for a
total of 13 queries. Below are two sample queries of varying
complexity from the SSB query set.

Query 1.1:
SELECT SUM(lo_extendedprice*lo_discount)

AS revenue
FROM lineorder, date
WHERE lo_orderdate = d_datekey

AND d_year = 1993
AND lo_discount BETWEEN 1 AND 3
AND lo_quantity < 25;

Query 1.1 is the first query in the set and returns a single
row – it performs an aggregate over the entire table, filtering
with selectivity 0.019, producing 1.14 million tuples at Scale
Factor 10. Query 4.3, on the other hand, is the last query in
the set, returns the fewest rows of all test queries. Its filters
have a selectivity of 0.000091.

Query 4.3:
SELECT d_year, s_city, p_brand1,

sum(lo_revenue - lo_supplycost)
AS profit

FROM date, customer, supplier,
part, lineorder

WHERE lo_custkey = c_custkey
AND lo_suppkey = s_suppkey
AND lo_partkey = p_partkey
AND lo_orderdate = d_datekey
AND s_nation = ‘UNITED STATES’
AND (d_year = 1997 OR d_year = 1998)
AND p_category = ‘MFGR#14’

2The TPC-H schema is not a clear star schema because the largest table,
lineitem, is only four times larger than the next largest table, orders,
which is why we chose not to experiment with it.



s # CPU threads # VM threads # HDD threads
0 0 0 0
1 5 5 5
2 6 6 10
3 ∞ ∞ ∞

TABLE II
MAPPING OF STRESS SCALE s TO ACTUAL STRESS UTILITY PARAMETERS.

s = 0 CORRESPONDS TO NO LOAD; s = CORRESPONDS TO “INFINITE

LOAD” (WORKER DEATH). COLUMNS CORRESPOND TO THE NUMBER OF

THREADS SPAWNED TO CONSUME SYSTEM RESOURCES. CPU THREADS

SPIN ON A FLOATING-POINT COMPUTATION, VM THREADS ALLOCATE

AND HOLD MEMORY, AND HDD THREADS CONTINUOUSLY WRITE AND

DELETE DATA FROM THE HARD DRIVE.

GROUP BY d_year, s_city, p_brand1;
ORDER BY d_year, s_city, p_brand1;

SSB queries were designed to span the range of typical
data warehousing queries in the commercial space. Queries’
selectivity and functions are designed to be as varied as
possible, attempting to provide TPC-H-like coverage of the
data set. Unless otherwise noted, our tests involve the serial
execution of the entire SSB query set, with time reflecting the
total runtime of all queries.

4) Indexes and Optimization: One of the main advantages
of Osprey over computation frameworks like MapReduce is
the ability to take advantage of features inherent in a relational
database – for example, indexes and clustering. Because we
expect Osprey to be used with a largely read-only load, indexes
were the clear choice to optimize performance. We created
indexes on all commonly filtered fields for both the fact and
dimension tables on all machines (each machine indexed its
local copy of its data).

The fact table – the tables on each worker representing
fractions of the fact table – was then clustered around the
field lo orderdate, as almost all queries in the SSB query
set were restricted by some date property. Finally, ANALYZE
was run on all individual tables to provide accurate histogram
data for Postgres’ query planner.

5) Stress: Since Osprey is designed for load balancing, we
need a way to artificially load a given machine, in a controlled
and repeatable way. We adapted a system stressing utility, CPU
Burn-In [18], which spawns a number of threads to consume
system resources, to suit our purposes. The utility spawns the
following types of threads:

1) a CPU-hogging thread, which executes
sqrt(rand()) in an infinite loop

2) a virtual-memory-hogging thread, which allocates a cer-
tain amount of memory and sleeps - by default, 256 MB

3) a hard drive-hogging thread, which continuously writes
data (in our case, 256 MB) out to disk

We scaled the amount of stress by setting the number of
these threads to spawn, in addition to other parameters of the
threads’ behavior. We feel this artificial load is a reasonable
approximation of real stress in a system.
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Fig. 6. Linear speedup test of Osprey. (Control parameters: k = 1, m = 10.)
Osprey demonstrates linear speedup. The dashed line shows the ideal linear
speedup curve. Control parameters: k = 1, m = 10, no stress.

For convenience, we define a four-point stress scale s, where
s = 0 represents no artificial stress and s = 3 represents
worker being “infinitely loaded.” (In our experiments, workers
stressed to s = 3 were simply disconnected from the Osprey
network, rather than actually overloading them.) Table II maps
the other s values to actual parameters of the stressing utility.

Table values were determined empirically, by observing the
effect a set of parameters had on a controlled execution, and
retaining the set that provided our desired consequences under
the controlled environment.

B. Results

In this section, we discuss our scalability, overhead, and
fault-tolerance results.

1) Scalability: Figure 6 summarizes the results of our
speedup test; our goal here is to demonstrate linear speedup,
where n machines complete a query n times faster than a
single machine. For a fixed 6 GB data set, we increase the
number of workers n in the cluster and measure completion
time for the full test query set. The backup factor k is set to
1 and m = 10 chunks per partition. The dashed line shows
the ideal linear speedup curve. The results clearly show linear
speedup.

Our system is inspired by some MapReduce techniques, but
does not necessarily imply that it is MapReduce scale; our tests
used (only) up to 8 nodes but we felt this was reasonable, as
database clusters of 8–12 machines are common. Commercial
deployments of Oracle RAC typically consist of 2–4 machines,
and other commercial vendors report customers using clusters
of 8–16 machines.

We also note that, with a replication factor of k = 1, the
system is handling almost 12 GB of data. With 8 worker
machines in the cluster, each node is handling 1.5 GB –
which exceeds the buffer pool size allotted to each Postgres
instance by a factor of 3. This should mitigate any in-memory
caching effects, suggesting the system will scale for other,
larger workloads.
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Fig. 7. Overhead test of Osprey. Here we vary the number of chunks per parti-
tion, to test the overhead introduced by increasing the number of chunks. This
figure compares the total Osprey query execution time (“Test Completion”),
the total time the average worker spent just in the Postgres instance (“SQL
Exec Time”), and the resulting difference in overhead (“Osprey Overhead”),
averaged over the number of chunks. Control parameters: n = 4, k = 1.

2) Overhead: One of the challenges in a distributed sys-
tem is to minimize the overhead of scheduling computation.
Middleware approaches such as Osprey are particularly prob-
lematic in terms of overhead because low-level optimizations
(inside the DBMS) are not available.

There are 3 primary sources of overhead in Osprey:
1) Subquery scheduling,
2) Delivering subquery requests to worker database servers

and returning the results, and
3) Startup and tear-down costs of the actual execution of

the subquery on each worker database server.
Figure 7 summarizes the results of our test. We vary the
number of chunks per partition m and measure the time
spent computing on each chunk (averaged over all chunks).
The “Test Completion” curve shows the total Osprey query
execution time, from when the query was started to when
the merged result was returned to the user, averaged by the
number of chunks. The “SQL Exec Time” curve shows the
time spent processing each chunk in just in each worker’s
Postgres instance (averaged over the chunks). We see that
the average time Postgres takes per chunk drops significantly
between m = 10 and m = 100, as the size of each chunk has
shrunk by a factor of 10. But we further see that the time per
chunk time does not drop between m = 100 and m = 1000,
showing that the chunks are so small that fixed startup costs
of executing a query in Postgres dominate.

Finally the “Osprey Overhead” is the difference between
the two other curves. This shows the per-chunk overhead in
Osprey due to scheduling and dispatching subqueries (and
receiving the results from the workers). The overhead at
m = 10 is larger than at m = 100, 1000, which reflects the fact
that Osprey has fixed startup costs independent of the number
of chunks. Because there are fewer chunks to amortize this
cost over, the overhead per chunk at m = 10 is larger. The
amortized overhead becomes very small as m increases.
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Fig. 8. Load balancing test of Osprey, in which one worker is artificially
stressed. Osprey achieves almost linear load balancing, even when one
machine is unavailable (s = 3). Note that for k = 0, s = 3 has no
corresponding time – with 1 worker down and no backups, no query could
complete. Control parameters: n = 4, m = 1000, l = 1.

We see clearly that we cannot make m too large – as chunks
become smaller and smaller, the fixed cost for executing a
subquery in Postgres dominates, which gives bad overall query
performance. We also cannot make m too small either, because
the number of chunks per partition controls how granular our
load balancing can be. There is a tradeoff in Osprey between
query performance (small m) and load balancing (large m); it
appears that m values between 10 and 100 are a good choice
for our configuration.

3) Load Balancing: Osprey’s use of chained declustering
and dynamic work scheduling was intended to provide re-
silience to worker failure or uneven load across worker ma-
chines. As discussed in Section III-D.1, chained declustering
provides a way for excess work to cascade to its neighbors.

We ran two experiments using a reduced query set that
repeats Query 1.1 five times:

1) Tests of the load balancing as we vary the amount of
stress on one machine, and

2) Testing the ability of the system to load balance as we
stressed more and more machines.

Figure 8 shows our results as we vary the amount of stress
placed on l = 1 machine, for varying backup factors k. With
k = 0, no backups are used, so no load balancing can occur.

For any other value of k, the expected load balancing curve
is linear. If the time when no node is stressed (s=0) is t0, then
with s = 3, the expected completion time is t0 · n/(n − l),
where n/(n − 1) represents the overall increased amount of
work per worker due to the single worker’s failure. We see that
Osprey performs as expected, with runtime climbing from 11
seconds at s = 0 to about 14 seconds at s = 3, which is close
to the expected slowdown of 4/3. This shows that Osprey is
able to quickly accept load from a stressed or failing node.

Next, Figure 9 shows our results as we vary the number of
machines stressed l, for a fixed stress level s = 1 over various
settings of k. Once again, with k = 0, no load balancing can
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Fig. 9. Load balancing test of Osprey. The number of machines experiencing stress is varied against the number of backups. (a) shows when l = 2 adjacent
machines (that share a partition) are stressed. (b) represents the non-consecutive l = 2 case. Osprey shows good load balancing results in both cases. Control
parameters: n = 4, m = 1000, s = 1.

occur, so the total completion time is the maximum completion
time of each of the workers. So for l = 1 . . . 3, the completion
time is constant. As in the first test, the ideal load balancing
curve is linear with respect to the number of machines loaded.
We see that Osprey performs as expected.

It is important to note that for l = 2 in a cluster of n = 4
machines, we have a choice of loading consecutive or non-
consecutive machines. This distinction is necessary because
in chained declustering, if k + 1 consecutive machines fail,
then data is unavailable because a partition is stored on k + 1
consecutive machines. But for any load short of actual failure,
a good dynamic scheduler should attempt to keep all workers
equally busy, whether or not stressed machines are adjacent.

Figures 9(a) and 9(b) show Osprey’s performance when
the l = 2 machines are consecutive and non-consecutive,
respectively. (Results for l = 0, 1, and 3 are the same for both
graphs.) We see that Osprey’s load balancer performs the same
for both choices, with (as expected) performance weakening
as more machines are loaded.

Finally, Figure 10 shows the load balance for a cluster of
n = 3 machines over time. The y-axis is the fraction of
total computation each worker contributes – if the system
were perfectly load balanced, all workers should contribute
equally. We see that as the system starts, the three workers
hover around 0.33, meaning they are balanced. At t = 190,
we stop Worker 1 – the remaining workers quickly compensate
for Worker 1’s loss, settling into a new equilibrium where each
worker contributes 0.5 of the total work.

We note that in these experiments (a) we started with an
empty buffer pool, (b) we attempted to avoid in-memory
effects by limiting the size of the buffer pool to 512 MB and,
(c) stressing (s > 0) also consumed memory, disrupting in-
memory/caching benefits. Furthermore, with replication factor
k > 0, the actual data size is much bigger than 5.5 GB. For
these load balancing tests, we ran a cluster with 4 workers.
With a replication factor of 3, each worker is responsible for
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Fig. 10. Load balancing test of Osprey, shown over time. The y-axis is
the relative fraction of total computation time each worker contributes. At
t = 190, we cause Worker 1 to fail. Both before and after the event, each
worker is contributing its fair share to the total computation time.

4.2 GB of data, which is larger than each machine’s 2 GB of
physical memory.

4) Scheduling Algorithms: Osprey implements three sched-
ulers, random, LQF, and majorization. Figure 11 shows Os-
prey’s results for each scheduling algorithm, in which l = 2
non-adjacent workers were stressed with varying settings of
s. The query set was Queries 1.2, 2.3, 3.4, and 4.2, selected
because they accessed a wide range of rows in the fact table
and were a representative sample of the full SSB test suite.

With no stress, all the schedulers should do roughly the
same. The random scheduler predictably does the worst,
running about 10% slower than LQF once stressed. Majoriza-
tion actually runs slower than LQF – it is a much more
complicated scheduler, having to look at the state of all PWQs
before making an assignment; this scheduling overhead hurts
majorization’s performance relative to LQF.
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Fig. 11. Comparison of different scheduling algorithms. Longest Queue
First chooses a subquery from the longest PWQ. Majorization minimizes the
differences in PWQ lengths. Random chooses a subquery at random from
available PWQs. Control parameters: n = 4, k = 2, l = 2.

V. CONCLUSIONS AND FUTURE WORK

We presented Osprey, a middleware implementation of
MapReduce-style fault tolerance for a SQL database. We have
demonstrated linear speedup for Osprey and that the overhead
for running a query is acceptable. We have further shown
that Osprey provides good load balancing and fault tolerance
properties, based on several key ideas:

1) Splitting up queries into subqueries that can be executed
in parallel,

2) Dynamic scheduling of those subqueries’ execution on
the workers, and

3) Re-execution of straggler subqueries.
These strategies are adapted from similar strategies em-

ployed in MapReduce, but Osprey differs in that it uses SQL-
based database systems, obtaining the benefits of indexing,
constraints, query optimization, and recovery. It is also em-
ploys shared-nothing design using chained declustering, rather
than a distributed file system (GFS) available to all machines.

We implemented Osprey as a middleware layer so that
we could have a usable distributed database system without
rewriting the query optimizer, executor, parser, etc. We believe
that existing distributed database vendors could take advantage
of the ideas in this paper if they were to internally partition
tables into chunks to facilitate mid-query restart. Though
adapting an existing system would be a substantial amount of
work, it may be necessary as database vendors have increasing
pressure to scale their systems to every larger datasets and
clusters. Exploring the impact of our chunking approaches
on the performance of distributed queries (versus existing
distributed databases that do not perform such chunking) is
an interesting area for future work.

There are several other future areas of work we would
like to explore: (1) Implement updates, inserts, and deletes
– as proposed in Section III-C.2. (2) More advanced query

schedulers – caching of chunks in the worker’s memory is
ignored during our scheduling, but assigning a chunk to a
worker that already has it in memory could improve the overall
query performance. (3) More accurate measure of chunk work.
Osprey’s scheduling algorithms assign work based on the
number of subqueries remaining in each PWQ. Ideally, the
length of each PWQ is the computation time remaining for
that partition, for which the number of subqueries remaining is
a proxy; more robust load balancing results should be possible
with an accurate remaining-time estimate, and (4) evaluation
of general join strategies as described in Section III-G.
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