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ABSTRACT 
Uncertain data arises in a number of domains, including data 
integration and sensor networks.  Top-k queries that rank results 
according to some user-defined score are an important tool for 
exploring large uncertain data sets.  As several recent papers have 
observed, the semantics of top-k queries on uncertain data can be 
ambiguous due to tradeoffs between reporting high-scoring tuples 
and tuples with a high probability of being in the resulting data 
set. In this paper, we demonstrate the need to present the score 
distribution of top-k vectors to allow the user to choose between 
results along this score-probability dimensions. One option would 
be to display the complete distribution of all potential top-k tuple 
vectors, but this set is too large to compute.  Instead, we propose 
to provide a number of typical vectors that effectively sample this 
distribution. We propose efficient algorithms to compute these 
vectors. We also extend the semantics and algorithms to the 
scenario of score ties, which is not dealt with in the previous work 
in the area. Our work includes a systematic empirical study on 
both real dataset and synthetic datasets. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – query processing. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Top-k, Distribution, Uncertain data, Typical. 

1. INTRODUCTION 
The need to manage uncertain data arises in many applications. 
Some examples include data cleaning, data integration, sensor 
networks, pervasive computing, and scientific data management. 
For example, acoustic sensors (e.g., microphones) are often used 
to detect the presence of objects. Due to the nature of acoustic 

sensing, detections produced by microphones are often 
ambiguous, with an object possibly being at one of several 
locations.  A common approach for storing such sensor data is to 
produce one record for each of the possible object locations, and 
assign a confidence (i.e., probability of existence in a table) to 
each record.  Often, a query over such data has a large number of 
result tuples.  In this context, top-k (i.e., ranking) queries have 
proven to be useful [11]. 

Unfortunately, the semantics of ranking in such systems are 
unclear, due to the fact that both scores and probabilities of tuples 
must be accounted for in the ranking. For example, it is unclear 
whether it is better to report highly ranked items with a relatively 
low probability of existence or a lower-ranked set of items with a 
high probability of existence. Thus, the definition of the semantics 
of top-k queries when the data is uncertain is an important issue.  
We next look at an example. 
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Figure 1. A table generated by sensors monitoring soldiers’ 
needs for medical attention. The Conf. (confidence) attribute is 

the probability of existence of the tuple. 
 

Example 1.  In the War-fighter Physiologic Status Monitoring 
application [19], the US military is embedding sensors in a “smart 
uniform” that monitors key biological parameters to determine the 
physiological status of a soldier. Under the harsh environment of 
the battlefield, it is crucial that sufficient medical resources reach 
wounded soldiers in a timely manner. Sensors in a smart uniform 
monitor thermal signals, hydration levels, cognitive and life signs, 
and wound levels. There are a few ways the soldier’s 
physiological states can be estimated with different sensors and 
with different confidence. An algorithm computes an overall 
score indicating how much medical attention the soldier needs 
and how urgent his or her condition is. In a central database, as 
shown in Figure 1, a table records the information sent out by the 
sensors in the soldiers’ uniforms. Each tuple in the table is one 
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estimate with some confidence. Sensors might be broken in harsh 
environments. For high availability, there can be two sets of 
sensors in a soldier’s uniform in case one of them breaks down or 
loses precision. When each sends out an estimate at about the 
same time and they are inconsistent, at most one of them can be 
correct (together they form a discrete distribution with the 
confidence indicating the weight of each). These estimates may 
differ considerably due to variations in sensors, the possibility of 
lost network messages, and different estimation algorithms.      
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Figure 1 shows tuples that were reported around the same time 
and thus estimating the same value for each soldier. T2, T4, and 
T7 are readings for soldier 2 and are mutually exclusive (i.e., at 
most one of them can be correct), denoted as T2⊕ T4⊕ T7. 
Similarly, T3 T6. The last column of the table indicates the 
confidence of the estimates. Given such a table, a military staff 
may want to query for the top-k soldiers who require the most 
medical attention and allocate the appropriate resources to deliver 
to the battlefield. For this toy example, we simply look at the top-
2 result. Possible worlds semantics has been used extensively in 
this context (e.g., [5]). Figure 2 shows the 18 possible worlds, 
their probabilities, and the top-2 tuples in each world according to 
the score attribute. 

⊕

Recently, there has been some work on the semantics of top-k 
queries on uncertain data, starting from the work of Soliman, 
Ilyas, and Chang [18]. The proposed semantics roughly fall into 
two categories: (1) returning k tuples that can co-exist in a 
possible world (i.e., that must follow the mutual exclusion rules) 
or (2) returning tuples according to the marginal distribution of 
top-k results (e.g., the probability that a tuple is top-k or at a 

specific rank in all possible worlds). The U-Topk [18] definition 
belongs to category (1) while the U-kRanks [18] and PT-k [9] 
definitions belong to (2). In this work, we propose an extension of 
the category (1) semantics. 

The answer to a U-Topk query is a tuple vector with the highest 
probability of being the top-k vector when we consider all 
possible worlds. For example, in Figure 2 we find that <T2, T6> 
has the highest probability (Pr(W3) + Pr(W4) = 0.2) of being in 
top-2 together and thus will be the result of U-Topk (for k = 2). 
Notice that U-Topk chooses a k tuple vector based purely on its 
probability. We observe three things: 

1. Although a returned k-tuple vector has the highest 
probability p of being the top-k, p itself can be rather small 
(an obvious upper bound on p is the probability that all k 
tuples exist in the table), and it may not be much bigger than 
the probability of other top-k vectors. 

2. The score distribution of the tuples is usually independent of 
the distribution of probability values of tuples. 

3. U-Topk does not take into consideration the distribution of 
the scores of all possible top-k tuple vectors. 

As a result of these observations, the total score of a U-Topk 
vector can be rather atypical, meaning that the score can vary 
dramatically from the expected score in the true top k. Figure 3 
shows this fact for our toy example. For the U-Topk vector (k = 2) 
<T2, T6>, although it has the highest probability (0.2) of being in 
top-2, this probability is not much bigger than other top-2 vectors, 
and its total score (118) is atypical, for the following reasons: 

1. With probability 0.76, the top-2 result has a higher total 
score than that of U-Topk; 

2. With probability 0.12 (not much lower than 0.2), the top-2 
total score (235) is about twice that of U-Topk; and 

3. The expected top-2 total score is 164.1, substantially higher 
than the score of the U-Topk vector. 

In our soldier example, score is meant to signify the severity of 
injury.  One could imagine that medical personnel might prefer to 
send resource to the units with score 235, as their injuries are 
presumably much more severe than those of the U-topk units, and 
the probability of the score 235 group is not much less than the U-
topk group. 

In Example 1, we intentionally limited the number of tuples and 
value of k so that it was feasible to list all possible worlds. But in 
reality k is often much bigger. We note that this problem with U-
Topk can be worse when k is bigger (i.e., k > 2). In other words, it 
is more likely that U-Topk will return a vector with an atypical 
score for large k. This is because for a specific k-tuple vector to be 
U-Topk, all k uncertain tuples must appear in the first place, 
lowering the probability and increasing the likelihood that the 
score is atypical. More specifically, due to the “curse of 
dimensionality” [2], no top-k vector likely dominates many 
possible worlds (or has a significant probability). If we arbitrarily 
increase the score of a tuple that is not in the most probable top-k 
vector (e.g., increase the score of T7 which is not in the most 
probable vector T2, T6), the U-Topk result can be arbitrarily 
atypical. 
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Figure 2. Possible worlds, their probabilities, and top-2 
tuples in each world. 

Figure 3. The distribution of top-2 tuples’ total scores. 

 



This dilemma is analogous to the “typical set” concept in 
information theory [4]. Example 2 shows that a maximum 
probability event can be atypical. 

Example 2.  Consider a biased coin with head probability 0.6 
and tail probability 0.4. Suppose we toss it n = 20 times and 
assign a score as the number of heads. Clearly, the outcome with 
maximum probability is all heads (score 20) with probability 

, which is still a very small value. However, 
the score of this outcome is very atypical. In fact, with 
overwhelming probability (1−3.66×10-5) we get a score smaller 
than 20. It can be shown that we most likely get a score of 12, 
with probability 

20 5(0.6) 3.66 10−≈ ×

12 8 20!(0.6) (0.4) 0.18.
12! 8!

⋅ ⋅ ≈
⋅

 It can further be 

proved that as n increases, with probability approaching 1, we 
would get score 0.6·n. The set of outcomes with this score is 
called the typical set [4].                                                   � 

We shall see more examples of atypical U-Topk answers in the 
experiments on real as well as synthetic datasets (Section 5). 

We also note that category (2) definitions (U-kRanks and PT-k) 
are not suitable for these kinds of applications because the tuples 
they return are based on their marginal distributions and do not 
follow the constraints of mutual exclusion rules (U-kRanks may 
even return the same tuple multiple times if it is the most probable 
one for more than one rank position). 

Let us step back and examine what the issue really is. The 
complete result of a top-k query on uncertain data, in fact, is a 
joint distribution on k-tuple vectors. If one were able to return 
such a joint distribution, it would represent a complete answer, 
and would provide users with a convenient representation of the 
tradeoff between probability and score from which they could 
select the results of interest. Unfortunately, a complete 
distribution is too expensive to compute, as well as to describe 
and return as the result. All existing definitions try to provide the 
most important information of such a distribution. Category (1) 
and (2) definitions are useful in different situations. Category (1) 
definitions are needed for scenarios that seek “compatible” k 
tuples (i.e., they can co-exist), which is required when, for 
instance, further inferences on the whole set of k tuples are 
performed, as in our examples. However, as we have observed, by 
simple selection of the highest probability, U-Topk may pick a k-
tuple vector that has a highly atypical score. What we propose in 
this work is a simple two-fold solution: 

(1) The application program can optionally retrieve the 
score distribution of top-k vectors at any granularity of 
precision (e.g., histograms of any bucket width). 

(2) We propose a new definition c-Typical-Topk which 
returns c typical top-k tuple vectors according to the 
score distribution, where c is a parameter specified by 
queries. Intuitively, the actual top-k’s score should be 
close to one of the c vectors’ score. 

We then address the computational challenge of obtaining the 
score distribution of top-k vectors and selecting c typical vectors. 
For the score distribution, we first give two simple and naive 
algorithms that either explore the state space to reach top-k tuple 
vectors (StateExpansion algorithm) or iterate through all k-tuple 
combinations within a bounded set of tuples (k-Combo 
algorithm). These two algorithms establish a baseline for 

comparisons. We then present our main algorithm which is based 
on dynamic programming and is much more efficient than the 
naive algorithms. The presentation of the main algorithm starts 
with the basic framework and is then extended to handle more 
complex and realistic scenarios, namely mutually exclusive tuples 
and score ties for tuples. Score ties are common when the score is 
based on an attribute that does not have many distinct values, e.g., 
year of publication, number of citations, or even non-numeric 
attributes [7]. Note that extending the semantics and algorithms to 
score ties (i.e., non-injective scoring functions) for uncertain data 
can be non-trivial [22] (because a single possible world can now 
have multiple top-k vectors) and is not dealt with in previous 
work. Once we obtain the score distribution of top-k, using ideas 
similar to [8], we apply a two-function recursive approach 
resulting in another efficient dynamic programming algorithm to 
select c typical vectors for c-Typical-Topk. 

We conducted systematic experiments on a real dataset of road 
delays in the greater Boston area as measured by the CarTel 
project team [10, 14], as well as a synthetic dataset. Through the 
experiments, we verify our motivation, study the performance of 
our algorithms, and observe interesting behaviors of the results 
with different characteristics of data.  In summary, the 
contributions of this work are: 

• A new semantics for presenting the answers of top-k queries 
on uncertain data to the applications. 

• Efficient algorithms to compute the two entities that can be 
returned to applications: the score distribution of top-k 
vectors and the c-Typical-Topk answers. 

• Extensions of our semantics and algorithms to the realistic 
scenario of ties in ranking scores. 

• A systematic empirical study on a real world dataset and a 
synthetic dataset. 

The remainder of the paper is organized as follows. In Section 2, 
we present the formal specification of returning score distribution 
and c-Typical-Topk and the semantics under score ties. We then 
cope with the computational challenges and develop efficient 
algorithms to compute score distributions in Section 3 and c-
Typical-Topk in Section 4. Comprehensive experiments are 
conducted in Section 5. Finally, we survey related work in 
Section 6 and conclude in Section 7. 

2. PROBLEM FORMULATION 
In this section, we present our data model and formal definitions 
of the Topk score distribution and c-Typical-Topk. 

2.1 Data Model and Scoring Function 
We follow the well-known tuple independent/disjoint data model 
from the probabilistic database literature [6, 20, 18, 9].  In this 
data model, an uncertain database D contains uncertain tables. An 
uncertain table T has an extra attribute that indicates the 
membership probability of a tuple in T. If a tuple’s membership 
probability is p (0 < p ≤ 1), it has probability p of appearing in the 
table and probability 1 – p that it does not appear. Table T also 
has a set of mutual exclusion rules. Each rule specifies a set of 
tuples which we call an ME group, only one of which can appear 
in T.  If a tuple has no mutual exclusion constraint, we simply say 
that it is in its own ME group (of size 1). The sum of the 

 



probabilities of all tuples in an ME group should be no more than 
1. The ME groups are assumed to be independent of each other. 

A scoring function s takes a tuple t and return a real number s(t) 
as its score. In the previous work, the scoring function s is 
assumed to be injective (i.e., each tuple maps to exactly one score, 
and no score is shared by two tuples), meaning that ties are not 
allowed. In many cases, it is non-trivial to extend the algorithms 
in the previous work to handle non-injective scoring functions; in 
fact, the result is undefined when there are ties in tuple scores. In 
this work, we remove that restriction and allow non-injective 
scoring functions. 

2.2 Score Distribution and c-Typical-Topk 
As discussed in Section 1, the scores of the k-tuple vector 
returned by U-Topk can be rather atypical, severely restricting the 
usefulness of the U-Topk result. We therefore propose to compute 
and provide the distribution of the total scores of top-k tuples. 
There are two possible usages of such a distribution: 

(1) An application can access the distribution at any granularity 
of precision (e.g., histograms of any bucket width). 

(2) An application can receive c typical top-k vectors (n.b., c-
Typical-Topk, defined below), where c is a parameter 
specified by queries. 

Intuitively, c-Typical-Topk returns c top-k vectors (for c ≥ 1) such 
that the actual top-k result (drawn according to its distribution) is 
close to at least one of the c vectors. When c = 1, the result has a 
score that is the expected score of top-k vectors; on the other 
hand, a big c value gives c vectors (and their probabilities) that 
approach the distribution of all top-k vectors.  Put another way, 
the ith vector has a score that is approximately i/(c+1) through the 
probability distribution of all possible scores. 

Definition 1 (c-Typical-Topk scores).  Let the distribution of the 
total scores of top-k tuples of an uncertain table T be a PMF 
(Probability Mass Function) D. We call the set of c scores {s1, s2, 
…, sc}, where si (1 ≤ i ≤ c) has non-zero probability in D, the c-
Typical-Topk scores if for a score S ~ D (i.e., randomly chosen 
according to D), 
     

1 1
1 2 { ,..., } { ,..., }

{ , , ..., } arg min [ min | |]
c i c

c s s s s s is s s E S s
∈

= −             � 

That is to say, over all choices of the c scores, for a random score 
S chosen according to D, |S – si| is minimal in expectation, where 
si is the closest score to S among the c scores. 

Definition 2 (c-Typical-Topk tuples).  We call the set of k-tuple 
vectors {v1, v2, …, vc}, where vi (1 ≤ i ≤ c) is a vector of top-k 
tuples of T in some possible world, the c-Typical-Topk tuples if 
          

( )
arg max Pr( ), 1

i i
i is v s

v v
=

= ≤ i c≤

where s1, s2, …, sc are c-Typical-Topk scores, s(vi) is the total 
scores of the tuples in vi, and Pr(vi) is the probability that vi is a 
top-k tuple vector of T.                                                        � 

In other words, vi is the most probable top-k tuple vector that has 
a total score si (if there is more than one such vector, vi can be any 
one of them). 

For example, we can find that the 3-Typical-Top-2 scores of the 
table in Example 1 is {118, 183, 235}, with an expected distance 
6.6 for a random top-2 vector. The 3-Typical-Top-2 vectors are 

{(T2, T6), (T7, T6), (T7, T3)}.  For comparison, the 1-Typical-
Top-2 vector is (T3, T2), which has a slightly smaller probability 
(0.16) than that of the U-Top-2 vector (T2, T6) with probability 
(0.2), but has a much more typical score of 170, as opposed to 
118 of the U-Top-2. 

2.3 Non-injective Scoring Function and Ties 
Now we consider the case in which the scoring function s is non-
injective and there can be ties among the scores of the tuples of an 
uncertain table. Score ties are common when the score is based on 
an attribute that does not have many distinct values, e.g., year of 
publication, number of citations, or even non-numeric attributes 
[7]. It is also called partial ranking in [7], where the authors 
studied combining several ranked lists to produce a single 
ranking. We call the set of all tuples that have the same score a tie 
group. When a tuple does not have the same score with any other 
tuple, it is in a tie group of size one. A tie group in an uncertain 
table T contains all uncertain tuples that have the same score; a tie 
group in a possible world contains all tuples that appear in that 
world and have the same score. 

We first discuss what this implies in a single possible world (i.e., 
without uncertainty). In a possible world w, as usual, a top-k tuple 
vector still contains a set of k tuples that have the highest scores. 
When there are ties, it is likely that there are multiple such top-k 
vectors in w, all ending in some tuples from a tie group. We say 
that a top-k vector v contains a tie group g if all tuples in g 
belongs to v. We say that a top-k vector v partially reaches a tie 
group g if at least one but not all tuples in g belong to v. We say 
that g contributes m tuples to v if exactly m tuples from g belong 
to v.  We state the following theorem without proof. 

Theorem 1. In a possible world w, all top-k vectors must contain 
the same set of tie groups. If there is more than one top-k vector, 
they must all partially reach the same tie group g and g 
contributes the same number of tuples m to all those vectors. In 
fact, there are | |g

m
⎛ ⎞
⎜ ⎟
⎝ ⎠

 such vectors, where |g| is the number of 

tuples in g.                                                                           � 

Example 3.  We can order the tie groups according to their 
scores in descending order. Let us say that g1 = {T2, T6}, g2 = 
{T3, T7, T10}, and g3 = {T5, T9, T12} are the three tie groups in a 
possible world with the highest scores. Among the three groups, 
g1 has the highest score and g3 has the lowest. Suppose we want 
to ask for the top-7 tuples. Then there are 3

3
2
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 top-7 tuple 

vectors {g1, g2, T5, T9}, {g1, g2, T5, T12}, and {g1, g2, T9, T12}, 
all containing g1 and g2 but partially reaching g3. g3 contributes 2 
tuples to each vector.                                                           � 

It is clear that all top-k tuple vectors of a possible world have the 
same total score. Thus, in terms of the score distribution, ties 
would not have any impact: the probability of some score is still 
the sum of the probabilities of all possible worlds whose top-k 
vectors have that score.  For c-Typical-Topk, among possibly 
multiple vectors that have some score, we choose one of them 
with the highest probability to appear in the uncertain table. 

 



3. COMPUTING SCORE DISTRIBUTION 
OF TOP-k 
A key challenge is to compute the distribution of the total scores 
of top-k tuple vectors. This is inherently computationally 
expensive because unlike U-Topk and U-kRanks, this is not really 
a search problem (e.g., searching for the highest probability 
vector), as, in this case, one must account for all top-k vectors’ 
scores and probabilities. The goal of such an algorithm is to 
output the distribution as a set of (score value, probability) pairs. 

3.1 Two Simple Algorithms 
We first present two algorithms which establish a baseline for 
comparison with the algorithm presented in Section 3.2 and 3.3. 
For now, we do not consider non-injective scoring functions and 
ties in tuples’ scores; these will be discussed in Section 3.4. 
Figure 4 shows the first algorithm, called StateExpansion. 

We first initialize the distribution to be an empty set (step 1). S is 
a set of states and we initialize it to contain one state – containing 
the empty tuple vector ε (step 2). We then go through all tuples in 
descending order by score, expanding each current state in S by 
either include the new tuple or not. When we reach k tuples for a 
state, we add it to the distribution to be returned (step 10). When 
the probability of a state gets too small (below a threshold pτ as an 
input parameter), it is dropped. Note that the number of (score, 
probability) pairs in the output dist could potentially be very 
large. Thus, in step (10), we use a coalescing strategy to limit the 
size of the output.The details are described in Section 3.2.1. The 
StateExpansion algorithm has an exponential cost in the number 
of tuples considered (subject to the probability threshold). 

We next show a more efficient algorithm. In this algorithm, we 
first determine an upper bound on the number of uncertain tuples 
that we have to examine when tuples are in rank order by score. A 
reasonable stopping condition is that we do not need to consider 
tuples that have probability less than pτ being in top-k. 

Theorem 2.  Given that we do not need to consider any tuple that 
has probability less than pτ being in top-k, the stopping condition 
of the sequential scan of tuples in rank order by score is at a tuple 
t satisfying 
        21 11 ln ln 2 lnk k 1

p p pτ τ τ

μ ≥ + + + +  

(i.e., we do not need to consider any tuple from t onwards), where 
 and T(t) is the set of all tuples ranked higher 

than t, except those in t’s ME group. Furthermore, such a 
stopping condition also guarantees that no k-tuple vector with 
probability pτ or more being in top-k is omitted. 
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Proof.  We use an existing result from [9]. Theorem 8 of [9] says 
that a slightly different condition 21 1ln ln 2 lnk 1k

p p pτ τ

μ ≥ + + +
τ

 

ensures Pr(t is in top-k) < pτ. We note that μ may not be 
monotonically increasing with more tuples because we have to 
exclude tuple t’s ME group, which can vary from tuple to tuple. 
However, the sum of the probabilities of t’s ME group is no more 
than 1. Thus, adding 1 to the right hand side of the inequality 
ensures that once the condition is satisfied at some tuple t, it will 
always be satisfied for all tuples onwards.  We further observe 
that for any top-k vector v that contains t, because v is top-k 

implies t is in top-k, we must have Pr(v is a top-k vector) ≤ Pr(t is 
in top-k) < pτ. Thus, the stopping condition also guarantees that no 
k-tuple vector with probability pτ or more being in top-k is 
omitted.                                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: T: an uncertain tuple set in rank order, 
           pτ: a probability threshold – note: a top-k vector with   
                probability below pτ need not be considered. 
Output: The score distribution of top-k vectors. 
(1) dist = Φ 
(2) S = {ε} 
(3) for each t from T do 
(4)     if S is empty then break end if 
(5)     S’ = Φ 
(6)     for each state s in S do 
(7)         Append t to s and get a new state s1. 
(8)         Compute s1’s score and probability based on s. 
(9)         if s1 has k tuples then 
(10)             Add its score and probability to dist. 
(11)         else if s1’s probability is greater than pτ then 
(12)                    S’ = S’ ∪ {s1}. 
(13)                end if 
(14)         end if 
(15)         Append t¬ to s and get a new state s2. 
(16)         Compute s2’s probability. 
(17)         if s2’s probability is greater than pτ then 
(18)             S’ = S’ ∪ {s2}. 
(19)         end if 
(20)     end for 
(21)     S = S’ 
(22) end for 
(23) return dist 

Figure 4. Algorithm StateExpansion.  

Theorem 2 gives us a stopping condition, which also satisfies the 
requirement in the StateExpansion algorithm (i.e., no k-tuple 
vector with probability pτ or more being in top-k is missed). Note 
that we always stop at the end of a tie group because tuples in a 
tie group either all satisfy the stopping condition or none does. 
Let the number of uncertain tuples we need to consider be n. We 
can simply iterate through all k-combinations of the n tuples using 
a standard algorithm that generates all k-combinations in 
lexigraphical order [16], but exclude those that violate the mutual 
exclusion rules. For each k-combination, we can compute its total 
score and probability, and eventually we get the distribution. We 
call this algorithm k-Combo. Its cost is O(nk). 

3.2 The Main Algorithm 
We now present our main algorithm, which is based on dynamic 
programming. Our presentation is done in several steps. In this 
subsection (3.2), we introduce the basic framework of the 
algorithm. In Section 3.3 and 3.4, we extend this algorithm to 
handle mutually exclusive tuples and score ties, respectively. 

Consider the table in Figure 5. The rows correspond to n 
(determined by Theorem 2) uncertain tuples in rank order by 
score. The columns are labeled from k to 1. A cell at row Ti 
column j contains the score distribution of top-j tuples starting 
from row Ti. Thus, our goal is to get the distribution in the cell at 

 



the upper left corner of the table (marked with a “?”), i.e., the 
score distribution of top-k tuples starting from T1. We first 
consider the basic case in which tuples are independent (i.e., no 
mutual exclusion rules) and there are no ties in score. 

 

 

 

 

 

 

 

 

 

 

 

Our goal, the distribution of top-k starting from T1 (upper left 
corner cell), can be composed using the distributions of two cells 
below it (marked with triangles in Figure 5): the distribution of 
top-k starting from T2 (when T1 does not exist) and the 
distribution of top-(k-1) starting from T2 (when T1 exists). In 
general, the distribution Di,j at row Ti and column j (top-j starting 
from Ti) is composed from the distribution Di+1,j at row Ti+1 and 
column j (top-j starting from Ti+1) and the distribution Di+1,j-1 at 
row Ti+1 and column j-1 (top-(j-1) starting from Ti+1) in the 
following way: 

(1) For each value and probability pair (v, p) in Di+1,j , we 
transform it to (v, p(1－pi)), where pi is the probability 
that Ti exists. 

(2) For each value and probability pair (v, p) in Di+1,j-1 , we 
transform it to (v+si , p·pi), where si is Ti’s score and pi 
is the probability that Ti exists. 

(3) Merge the value and probability pairs resulting from (1) 
and (2) by taking their union except for the following: 
if two pairs have the same value, they become one pair 
with that value and with the new probability being the 
sum of the two original ones. 

The right hand side of Figure 5 shows pictorially the merging 
process. Since all top-k tuples (there are k of them) must be 
among the n tuples T1 to Tn, we only need to fill in the 
distributions in the table of Figure 5 between the two dotted lines. 
For example, we do not need to get the distribution of top-(k-1) 
starting from T1; nor do we need top-2 starting from Tn , etc. 

The recursive process described above fills in the table in a 
bottom-up manner. For the boundary conditions of the recursion, 
we add an auxiliary column 0 at the right border of the table. The 
distribution at a cell of column 0 has only one (value, probability) 
pair: (0, 1), i.e., score 0 with probability 1. For the a boundary cell 
(at row Tn-i+1 and column i, for i = 1, …, k) immediately above the 
bottom dotted line, its distribution also has only one (value, 
probability) pair: 
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In the algorithm we also keep track of one tuple vector for each 
(v, p) pair, which is needed for obtaining c-Typical-Topk. The 
vector is one (among possibly many) that has score v and has the 
highest probability of being the top vector. The recorded tuple 
vector is initially empty at column 0 and contains only Tn for the 
cell at row Tn and column 1. Thereafter, step (1) of the 
distribution merging process does not change the tuple vector 
while step (2) prepends Ti to the vector. In step (3), when two 
pairs have the same value and get combined, we keep the vector 
that has the higher probability. 
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3.2.1 The Need for Approximation 
Thus far, it appears that the cost of this algorithm is O(kn). 
However, there is one potential problem. For a cell at row Ti and 
column j (i.e., the distribution of the total scores of top-j starting 
from row Ti), there are 1n i

j
− +⎛

⎜ ⎟
⎝ ⎠

⎞  possible combinations that 

make up the top-j scores (1 ≤ i ≤ n, 1 ≤ j ≤ k). In the worst case, 
each combination has a distinct total score, resulting in a 
distribution that has the same number of discrete values (vertical 
lines in the PMF) in the cell. Thus, the number of vertical lines of 
a distribution is upper bounded by , which is O(nk). Recall 

that the distribution merging process described above goes 
through each vertical line (v, p), increasing the worst case 
complexity of the main algorithm to O(nk). Note that in most 
applications, in reality, scores are not too far apart, and total 
scores of different combinations are often very close or even the 
same. Even if they were all distinct, it would often be unnecessary 
to keep all O(nk) lines in the PMF. It is more desirable to have a 
slight sacrifice in the accuracy of the distribution in exchange for 
a gain in efficiency. Imagine that the range of total scores of top-k 
is [smin, smax]. The range can be easily determined: smax is the total 
score of T1 to Tk and smin is the total score of Tn-k+1 to Tn since they 
are sorted. Note that the span smax – smin is relatively insensitive to 
the problem size n. We divide the span into a constant number c’ 
of same-size intervals (e.g., c’ = 200). Each interval size is δ = 
(smax – smin) / c’. Suppose for the application we can coalesce 
vertical lines that are no more than δ away from each other in the 
distribution (i.e., differ by no more than δ in total scores). Then 
the cost to describe the output distribution is a constant. 

n
k
⎛ ⎞
⎜ ⎟
⎝ ⎠

Figure 5. Illustrating the basic dynamic programming 
algorithm, as explained in the text below. 

We call the distribution at row T1 and column k (i.e., upper left 
corner) the final distribution and those at other cells intermediate 
distributions. We can have a “line coalescing” strategy as follows. 
At any intermediate or final distribution, whenever the algorithm 
results in more than c’ vertical lines, (1) pick two lines that are 
closest to each other and coalesce them into one: the score value 
is their average and the probability is their sum; (2) repeat the first 
step until we have c’ vertical lines. As for the recorded top vector, 
when we coalesce two lines, we keep the tuple vector that has the 
higher probability. 

We first observe that in the bottom-up process of computing the 
dynamic programming table of Figure 5, two lines (v1, p1) and (v2, 
p2) in an intermediate distribution are always going to change in a 
synchronized way: either they both stay at the same scores (step 1 
of the distribution merging process) or the two lines get “shifted” 
with the same offset by adding the same score (step 2 of the 
merging process). In both cases their probabilities are scaled by 
the same factor. Thus, coalescing two lines in an intermediate 

 



distribution effectively is equivalent to coalescing them in the 
final distribution since they would have the same distance in 
scores, had we not coalesced them in any of the intermediate 
distributions. 

Secondly, it is not hard to see that the span of any intermediate 
distribution is no more than that of the final distribution (smax – 
smin). This is because intermediate distributions either only 
consider top-j (j < k) or they use a subset of the n tuples. Thus, if 
an intermediate distribution has more than c’ lines, by picking the 
two lines with minimum distance, we must be coalescing two 
lines that are no more than δ apart. 

Now given that we have a constant cost of distribution merging, 
our basic algorithm so far has O(kn) time complexity. In the next 
two subsections, we extend our basic algorithm to more complex 
and realistic scenarios in which there are mutual exclusion rules 
and possible score ties among tuples. 

Note that we do this line coalescing similarly for the 
StateExpansion and k-Combo algorithms in Section 3.1 as well. 
For example, in step (10) of StateExpansion, we make sure dist 
has no more than a constant number of score/probability pairs. 
This, however, does not change the complexity of those two 
algorithms. 

3.3 Handling Mutually Exclusive Rules 
The problem gets more complicated when there is correlation 
among the tuples. We now describe how to handle mutually 
exclusive tuples. The original algorithm would not work in the 
presence of mutually exclusive tuples because the final 
distribution would be wrong if more than one tuple in an ME 
group simultaneously contributes to a top-k score. 

3.3.1 Two False Starts 
In the bottom-up dynamic programming algorithm, one might 
first be tempted to do the bookkeeping of which ME groups have 
contributed a tuple to a score (and with what probability). In this 
case, we do not add additional tuples from those ME groups into 
the intermediate distributions. Unfortunately, this is combinatorial 
and is too costly. 

Another approach compresses all tuples in a mutually exclusive 
set into one tuple. We use the terminology in [9] and call it a rule 
tuple. A rule tuple has a composite score and a probability of the 
sum of the original tuples. At a row of a rule tuple, step (1) of the 
distribution merging process stays the same and step (2) changes 
to adding each score/probability of the original tuples of the rule 
separately. For example, if a rule tuple has three original tuples, 
we do step (2) three times. However, the problem with this 
approach is that we have nowhere to place the rule tuple in the 
dynamic programming table since it has a composite score. 
Wherever we place it, we are unable to compute the probability of 
a top-k score correctly because we have lost the information of 
exactly which original tuples appear (or do not appear) in a strict 
score order. 

3.3.2 A Good Start 
Although the second strategy above fails, it provides the 
following inspiration: suppose we require that the last tuple (i.e., 
the k-th) of the top-k has to be Tn, then the tuples in the dynamic 

programming table can be in any arbitrary order (i.e., they do not 
have to be ordered by scores as stated earlier). This is because for 
any tuple i with a score higher than the last tuple of the top-k, if i 
is in the top-k, we simply multiply the current probability by its 
probability pi ; if i is not in top-k, we multiply by (1 − pi). The 
earlier order requirement simply prevents us from multiplying the 
(1 − pi) for any tuple i with a score smaller than the last one in 
top-k. But if the last one in top-k is Tn , we know for sure all other 
tuples have a higher score.  Now without the order constraint, we 
can then modify the original tuples in the following way: 

(1) Remove all other tuples (if any) that are in the same 
ME group as Tn from the table. 

(2) Compress all other ME groups into rule tuples and 
leave them in any order. Remember the constituent 
original tuples’ scores and probabilities for a rule tuple. 
A rule tuple also has a probability that is the sum of 
those of the constituent tuples. 

The next trick ensures that the dynamic programming algorithm 
only considers the top-k vectors that end with Tn. Recall that we 
added an auxiliary column 0 at the right border of the dynamic 
programming table of Figure 5. Each cell in column 0 holds a 
distribution (0, 1) – score 0 with probability 1. We call a cell in 
column 0 an exit point because it indicates that we do not need to 
select any more tuples as top-k from that tuple and below. In order 
to only incorporate top-k vectors that end with Tn, all we need to 
do is simply “block” those exit points by letting them have a 
distribution of (0, 0) instead – score 0 with probability 0. It can be 
easily verified that such a distribution cannot be propagated by 
the distribution merging process. With that change, the dynamic 
programming algorithm can proceed as before. 

The change on the distribution merging process to the main 
algorithm is the same as that described in the second attempt in 
Section 3.3.1. 

What we have achieved so far is only the distribution of total 
scores of top-k vectors that end with Tn. To get the distribution for 
all top-k vectors, an easy extension is simply to repeat this for 
each tuple from Tk to Tn (i.e., truncate the dynamic programming 
table at each of those tuples and treat them as the last tuple of the 
top-k, respectively) and then we merge all the final distributions 
together. For a truncated table, an ME group may be truncated as 
well. That is, if the table is truncated at Ti (k ≤ i ≤ n), an ME 
group now only contains tuples in the remaining table (i.e., from 
T1 to Ti). The compression step now applies to the reduced ME 
groups. 

3.3.3 Refinement 
It turns out that we can do better than the simple extension above. 
We call a tuple a lead tuple if it is the first one (i.e., with the 
highest score) in an ME group. If an ME group has only one tuple 
(i.e., not mutually exclusive with any other tuple), that tuple is a 
lead tuple. In a score-sorted sequence T1 to Tn, a maximal 
contiguous subsequence of lead tuples Ti, Ti+1, …, Tj is called a 
lead tuple region. For a subsequence to be maximal, it must be 
satisfied that (1) either i = 1 or Ti-1 is not a lead tuple; and (2) 
either j = n or Tj+1 is not a lead tuple. 

We can see that we do not need to do the dynamic programming 
procedure for each tuple. Instead, we only need to do it once for 
every lead tuple region and once for every non-lead tuple. This is 

 



because when the dynamic programming table ends with a lead 
tuple region, tuples in it behave exactly as independent tuples and 
they will not interfere with any other tuples above. Thus, for a 
lead tuple region, we can simply do one dynamic programming to 
get the score distribution of top-k vectors that end with any tuple 
in that lead tuple region. We achieve this by setting the boundary 
conditions properly. For the distributions in the cells of the 
auxiliary column 0, we set it to be (0, 1) at the rows of a lead 
tuple region in question and set it to be (0, 0) for other rows. 
Recall that (0, 0) is to block an exit point and (0, 1) is to enable it. 
Everything else, including the rule tuple compression, stays the 
same. This is illustrated in Figure 6. 

 

Figure 6. One dynamic programming for a lead tuple 
region. 

 

 

 

 

 

 

 

 

 
 
With this improvement we can see that the time complexity of our 
algorithm that handles mutually exclusive tuples is O(kmn), where 
m is the number of tuples (among T1 to Tn) that are mutually 
exclusive with other tuples. In many applications, mutually 
exclusive tuples are only a small proportion of the total. The 
computational cost is proportional to this fraction. 

3.4 Handling Ties 
In many real applications, the scoring function s is non-injective 
which leads to ties among the tuple scores [7]. We discussed the 
semantics of top-k vectors and score distributions at the end of 
Section 2. We now extend the dynamic programming algorithm 
that we have developed so far to take care of the case of score 
ties. We shall prove that the following simple extension of the 
algorithm satisfies our requirements: 

Recall that before, the sort order was on scores. Now, sort 
tuples in descending order by (score, probability). When two 
tuples have the same score, they are in descending order of 
probability; when they have the same probability as well, 
break ties arbitrarily. 

Aside from this adjustment, the algorithm works the same as 
before.  The next theorem shows that this modification is correct. 

Theorem 3.  With the above extension to the dynamic 
programming algorithm, we achieve our two goals: (1) we obtain 
the correct final score distribution of top-k and (2) among vectors 
that have the same score, the one that is captured at the end of the 
algorithm is the one with the highest probability. 

For the proof of Theorem 3, we first need the following definition 
and lemma. 

Definition 3 (Configuration of top-k).  A configuration of top-k 
is a set of (k − g) uncertain tuples plus g tuples from a tie group 
in non-increasing score order, with the ending tie group having 
the lowest score (the k − g tuples are not in that tie group). 

Note that a configuration has a fixed total score and two 
configurations may have the same total score. The probability of a 
configuration is the probability that such a configuration is the 
top-k tuple vector. 

Lemma 1. Let A be the set of (k − g) uncertain tuples and T be 
the ending tie group of a configuration. Let B be the set of tuples 
that have higher scores than those in T but are not in the 
configuration. The probability of the configuration is the 
probability that (1) tuples in A appear, and (2) those in B do not, 
and (3) at least g tuples from T appear. 
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Proof (Lemma 1). Clearly, (1) and (2) must be true for the 
configuration to be top-k. Except for the case that fewer than g 
tuples from T appear, this configuration will be top-k. Thus, we 
have (3).                                                                                 

Proof (Theorem 3). A top-k score distribution is made up of 
different configurations. Therefore, to prove goal (1) of Theorem 
3, we only need to show that our algorithm computes the 
probability correctly for each configuration. 

For the ending tie group T of a configuration, our algorithm puts 
the tuples in probability descending order. In fact, we can see that 
for any arbitrary order, as long as it is fixed, the dynamic 
programming will compute the probability of the configuration 
correctly. Let the ending tie group T have t tuples in total: T1, T2, 
…, Tt in some fixed order. The event (3) in Lemma 1 (i.e., at least 
g tuples from T appear) can be decomposed into t

g
⎛ ⎞
⎜ ⎟
⎝ ⎠

 sub-events 

as follows. Imagine a t-bit binary string. We choose g bits and set 
them to 1; the other bits are all 0. Clearly there are t

g
⎛ ⎞
⎜ ⎟
⎝ ⎠

 such 

strings. We use each of them to construct a sub-event: we truncate 
the string at the last 1 bit; then starting from the 1st bit until the 
last bit (which is 1), if the i’th bit is 1 (or 0), we add “Ti appears” 
(or “Ti does not appear”, respectively) into the sub-event. It is 
easy to see that the dynamic programming procedure computes 
the probability of each such sub-event and adds them up to be the 
probability of the event (3) in Lemma 1. Thus, the algorithm 
computes the probability of the configuration correctly and we 
finish the proof of goal (1) of Theorem 3. 

Example 4.  Consider the scenario that the first seven uncertain 
tuples are: 
(T1, 10, 0.5), 
(T2, 8, 0.3), (T3, 8, 0.2), (T4, 8, 0.1), 
(T5, 7, 0.5), (T6, 7, 0.4), (T7, 7, 0.2). 
That is, T1 has score 10 and probability 0.5, and so on. Consider 
a top-5 configuration c that includes T1, T2, T4, and two tuples 
from the tie group g = {T5, T6, T7}. Then  

Pr(c) = Pr(T1)Pr(T2)(1−Pr(T3))Pr(T4)Pr(≥ 2 tuples in g appear) 

We can compute that Pr(≥ 2 tuples in g appear) = 0.5·0.4·0.2 + 
0.5·0.4·(1−0.2) + 0.5·(1−0.4)·0.2 + (1−0.5)·0.4·0.2 = 0.3.  On the 
other hand, our dynamic programming algorithm will calculate 
the probability of this part of c to be: 0.5·0.4 + 0.5·(1−0.4)·0.2 + 

 



(1−0.5)·0.4·0.2 = 0.3 as well. Thus, our algorithm computes the 
probability of the configuration c correctly. 

We next show that our algorithm achieves goal (2), i.e., the vector 
recorded is the one with the highest probability. Note that the 
algorithm may not compute the probability correctly for all 
vectors in a top-k configuration, but it does compute it correctly 
for the one with the highest probability, due to the fact that we 
order the probability in non-increasing order in the ending tie 
group. In Example 4, our algorithm computes the probability of 
the vector that ends with T5 and T6 correctly: 0.5·0.4 = 0.2 (for the 
part in tie group g). On the other hand, for the vector ending with 
T5 and T7, the algorithm computes 0.5·(1−0.4)·0.2 = 0.06, but the 
actual probability should be 0.5·0.2 = 0.1. This is fine because we 
only need to return the vector that has the maximum probability. 

Note that the extension of our algorithm to handle mutually 
exclusive tuples as discussed in Section 3.3 would not affect the 
results of our proof above. This is because for a given 
configuration of top-k, after removing tuples in set T that are 
mutually exclusive with any tuple in set A (sets T and A as 
defined in Lemma 1), our proof holds in the same way. This 
concludes the proof of Theorem 3.                                           

It is not hard to see that the same method can be applied to the 
algorithm StateExpansion in Section 3.1 as well to handle score 
ties: we just need to sort the tuples in (score, probability) 
descending order. 

4. COMPUTING c-TYPICAL-TOPk 
Given a distribution of the total scores of top-k vectors as 
computed in Section 3, we now study how to compute c-Typical-
Topk vectors. We first formalize the problem. Let the score 
distribution be {(s1, p1), (s2, p2), …, (sn, pn)} and each score si (1 ≤ 
i ≤ n) is associated with a top-k tuple vector vi . The vector vi is 
the one with the highest probability of being top-k, among those 
having the same total score. Our goal is to choose from the n 
vectors and output c of them such that their scores satisfy the 
optimality requirement in Definition 1. We call si a typical score 
if its vector is chosen by the algorithm. 

Using ideas similar to [8], we can derive an efficient O(cn) time 
dynamic programming algorithm to solve this combinatorial 
optimization problem. We use a two function recursive approach. 
Let Fa(j) be the optimal objective value of the subproblem 
reduced to the set {sj, …, sn}, for j = 1, …, n, where a is the 
maximum number of typical scores and let Ga(j) be the respective 
value for the same subproblem, provided that sj is a typical score. 
We have, for j = 1, …, n, and a ≤ c, 
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In equation (1), k iterates over the possible first typical score’s 
positions, and in (2), k is the first position that is closest to the 
second typical score (i.e., sj to sk-1 are closest to the first typical 
score, sj). The solution for our original problem is thus given by 
Fc(1). The boundary conditions are 
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Input: A top-k score distribution (si , pi , vi), 1 ≤ i ≤ n, where 
si is a score, pi is its probability, and vi is a top-k tuple vector 
that has score si  and has the highest probability; an integer c 
Output: c tuple vectors that are c-Typical-Topk. 
(1) P[0] = PS[0] = 0 
(2) for j = 1 to n do 
(3)     P[j] = P[j-1] + pj 
(4)     PS[j] = PS[j-1] + pj*sj 
(5) endfor 
(6) for j = 1 to n do 
(7)     G[1][j] = 0 
(8)     for b = j to n do 
(9)         G[1][j] = G[1][j] + pb*(sb − sj) 
(10) endfor endfor 
(11) for a = 1 to c do 
(12)     F[a][n+1] = 0 
(13) endfor 
(14) a = 1 
(15) for j = 1 to n do 
(16)     F[a][j] = MAX_DOUBLE 
(17)     f[a][j] = 0 
(18)     for k = j to n do 
(19)         tmp = (P[k] – P[j-1])*sk − PS[k] + PS[j-1]+G[a][k] 
(20)         if tmp < F[a][j] then 
(21)             F[a][j] = tmp 
(22)             f[a][j] = k 
(23) endfor endfor endif 
(24) for a = 2 to c do 
(25)     for j = 1 to n do 
(26)         G[a][j] = MAX_DOUBLE 
(27)         g[a][j] = 0 
(28)         for k = j+1 to n+1 do 
(29)             tmp = PS[k-1] − PS[j-1] − (P[k-1] − P[j-1])*sj + 

F[a-1][k] 
(30)             if tmp < G[a][j] then 
(31)                 G[a][j] = tmp 
(32)                 g[a][j] = k 
(33)     endfor endfor endif 
(34)     Do the for loop between line (15) and (23) 
(35) endfor 
(36) k = 1 
(37) for a = c down to 1 do 
(38)     i = f[a][k] 
(39)     output vi 
(40)     k = g[a][i] 
(41) endfor 

Figure 7. The algorithm to select c-Typical-Topk. 
 

We define, for j = 1, …, n, 

1 1
( ) , ( ) (4)

j j

b b b
b b

P j p PS j p s
= =

= =∑ ∑  

Then we can rewrite (1) and (2) as 

 



1

1

( ) min ( ( ) ( 1)) ( ) ( 1) ( ) (5)

( ) min ( 1) ( 1) ( ( 1) ( 1)) ( ) (6)

a a
kj k n

a a
jj k n

F j P k P j s PS k PS j G k

G j PS k PS j P k P j s F k
≤ ≤

−

< ≤ +

⎡= − − − + − +⎣

⎡= − − − − − − − +⎣

⎤⎦

⎤⎦

With some preprocessing of (4) that takes O(n) time, we can first 
get all P(j) and PS(j) values. Then the dynamic programming 
algorithm based on (5) and (6) will just take O(cn) time. 

We show the algorithm in Figure 7. We first pre-compute all the 
P(j) and PS(j) values (lines 1 to 5). Lines 6 to 13 set the boundary 
conditions according to Equation (3). Lines 14 to 35 iteratively 
apply Equation (5) and (6) in turn to fill in the two dynamic 
programming tables (i.e., all F and G values). Note that f and g 
values (lines 22 and 32) keep track of the k values that minimize 
the r.h.s. of Equations (5) and (6). This is needed to trace back 
and output the c typical top-k tuple vectors (lines 36 to 41). 

Note that a user could examine the edit distances [24] between the 
vectors and potentially try different values of c. Once the dynamic 
programming that computes the score distribution is performed, 
the database system has finished the majority of the computation 
and contains the whole distribution and associated vectors. 
Changing the c value only implies a re-computation of the 
algorithm in this section, which is much cheaper. The magnitude 
of the distances indicates the span of the k-dimensional vector 
space. Smaller distances indicate that the result is less uncertain 
while bigger distances indicate larger uncertainty.  Depending on 
the application, a user can do different things with the result. For 
example, in the Soldier Physiologic Status Monitoring application 
(Example 1), medical personnel would probably examine the high 
score range of the distribution since a score indicates the severity 
of injury. A different application might weight the probability 
values more. 

5. EMPIRICAL STUDY 
In this section, we conducted a systematic empirical study 
addressing the following questions: 

• What does the score distribution of top-k tuple vectors look 
like for real-world data? Furthermore, where does the U-
Topk vector stand in the distribution, and where do c-typical 
vectors stand in the distribution? 

• What is the performance of our main algorithm that 
computes the score distribution? How does it compare with 
StateExpansion and k-Combo? What are the scan depth (i.e., 
the number of tuples n that need to be read by our 
algorithms) values for various k values as determined by 
Theorem 2? How does the proportion of mutually exclusive 
tuples affect performance? By trading off accuracy for 
performance, how does the line coalescing strategy presented 
in Section 3.2 improve performance? 

• What is the impact on score distribution and typicality of U-
Topk as we alter the following system parameters: (1) the 
correlation between scores and confidence, (2) the score 
range (variance), (3) the score range within ME groups and 
the size of ME groups? 

5.1 Setup and Datasets 
We performed the study using the following two datasets: 

• A real-world dataset collected by the CarTel project team 
[10]. It consists of measurement of actual traffic delays on 

roads in the greater Boston area performed by the CarTel 
vehicular testbed [14], a set of 28 taxis equipped with 
various sensors and a wireless network. 

• A synthetic dataset generated using the R-statistical package 
[23]. With the synthetic dataset we can control the various 
parameters of the data and study their impact on results. 

We implemented all the algorithms presented in this paper and the 
U-Topk algorithm presented in [18] to study the results. All the 
experiments were conducted on a 1.6GHz AMD Turion 64 
machine with 1GB physical memory and a TOSHIBA 
MK8040GSX disk. 

5.2 Results on the Real-world Dataset 
In the first experiment, we examine the score distribution of top-k 
tuple vectors as computed by the main algorithm presented in the 
paper using the CarTel data. We execute the following query over 
some random areas taken from the whole dataset: 

SELECT segment_id, 
                speed_limit / (length / delay) AS congestion_score 
FROM area 
ORDER BY congestion_score DESC 
LIMIT k 
Each tuple of the relation area is a measurement record of the 
actual travel delay of a road segment. In this query, we define 

_ lim_ ,
/

speed itcongestion score
length delay

=  where the denominator is the 

actual travel speed and the numerator is the speed limit of the 
road segment. Thus, the congestion score is an indication of the 
travel speed degradation at a road segment (up to a constant 
factor: in the dataset, the speed_limit is in km/hour while the 
length is in meters and delay is in seconds). A higher congestion 
score implies a more congested road segment. The query selects 
the top-k most congested road segments in an area (say, a city). 
City planners might want to first locate the k most congested 
roads and their total (or equivalently, average) scores to give them 
an idea of how serious the situation is. For example, when the 
total scores exceed some threshold, the city planners will spend 
some funding to fix the traffic problem on the most congested 
road segments (e.g., by adjusting traffic light cycles, adding 
parallel roads or widening existing ones). Each road segment 
contains one or more measurement record. In general, each record 
is considered uncertain and the delay of a road segment is 
probabilistic [14]. If a road segment contains multiple 
measurements, we bin the samples and collect the statistics of the 
frequencies of the bins and obtain a discrete distribution, in which 
each bin is assigned a value that is the average of the samples 
within the bin. Bins in a distribution are mutually exclusive so 
that at most one of them may be selected in a possible world. 
Thus, a top-k tuple vector always contains distinct road segments. 

Figure 8 shows the distributions of the total congestion scores of 
top-k roads at three random areas from the dataset. We use our 
main algorithm presented in Section 3.2 to 3.4 to compute the 
score distributions and the algorithm in Section 4 to compute c-
Typical-Topk. We also examine where the resulting vector from 
the U-Topk algorithm [18] stands in the distribution. We show the 
U-Topk result as a solid (red) arrow and the three dotted arrows 
are 3-Typical-Topk results. The height of an arrow roughly 
indicates the probability of the corresponding k-tuple vector. We 

 



can see that in all three subplots, the score of the U-Topk result is 
rather atypical. In Figure 8 (a) and (b) it is higher than the three 
typical scores while in Figure 8 (c) it is lower. Although being the 
highest probability vector, the U-Topk result still has a very small 
probability, and it may only be slightly bigger than many other k-
tuple vectors. By the definition of c-Typical-Topk, the actual top-
k vector (drawn according to its distribution) is more likely to 
have a score that is close to one of the c typical vectors. Informed 
by the score distribution and typical vectors, the city planners will 
have a much more accurate picture of how serious the top-k most 
congested road segments are. 

5.3 Performance on the Real-world Dataset 
In the second experiment, we examine the performance of our 
algorithms. We run the same query as shown in Section 5.2, but 
try different system parameters. Since the performance of both 
our main algorithm and k-Combo relies on the scan depth n as 
determined by Theorem 2, it is interesting to study what are the 
actual values of n for various k’s with the real-world dataset. We 
set pτ to be 0.001. Figure 9 shows the result that n grows roughly 
linearly with k as is expected from the theorem. 

We next compare the performance of our main algorithm that 
computes the score distribution with the two simple algorithms 
presented in Section 3.1, namely StateExpansion and k-Combo. 
For all three algorithms, we limit the number of lines in the output 
distribution to be more than 100. We try different k values in the 
query and compare the execution times of the three algorithms, as 
shown in Figure 10. We can see that both State-Expansion and k-
Combo have an exponential growth on the running time as k 
increases, with k-Combo being slightly better. On the other hand, 

our main algorithm which uses dynamic programming techniques 
is significantly more efficient. 
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   Figure 8. Congestion score distribution of top-k tuple vectors in three random areas and the results of U-Topk and 3-Typicals. 
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     Figure 9. k vs. scan depth (n)        Figure 10. k vs. execution time       Figure 11. ME portion vs. time   Figure 12. # of lines vs. time 

Next we examine the performance of our main algorithm as we 
vary the portion of mutually exclusive tuples by first selecting a 
subset of road segment records and run our query against it. The 
result is shown in Figure 11. As expected, the computation cost 
increases as we increase the portion of tuples that are mutually 
exclusive with other tuples, as discussed in Section 3.3. 

Finally, recall that in Section 3.2 we devised a line coalescing 
strategy in order to trade off accuracy for performance. The 
parameter here is the maximum number of lines allowed in the 
distributions. We vary this parameter from 50 up to 500 and the 
result is shown in Figure 12. We can see that the runtime varies 
linearly as the number of lines grows. The reason is that as the 
dynamic programming algorithm progresses bottom-up, very soon 
line coalescing takes effect, and the amount of computation 
thereafter is proportional to the number of lines in the 
distributions. 

5.4 Results on the Synthetic Dataset 
In this section, we use synthetic datasets because they give us 
control over various characteristics of the data. We further 
examine the impact of different kinds of data on score distribution 
and on how typical U-Topk results are. We first study different 
correlations between score and probability of tuples. We generate 
scores and probabilities as bivariate normal distributions with 
different correlation coefficients for the cases of independence (ρ 
= 0), positive correlation (we use ρ = 0.8), and negative 
correlation (we use ρ = −0.8). We show the top-10 results for 
these three cases in Figure 13 (a), (b), and (c) respectively. We 
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Figure 13. Score distribution of top-10, U-Topk, and 3-Typical for different score & probability correlations: ρ=0 (a), 0.8 (b), -0.8(c). 
0.12 0.09 0.08

can see that compared to the independence case (Figure a), a 
positive correlation between scores and probabilities shifts the 
score distribution of top-k vectors to the right (Figure b) while a 
negative correlation shifts it to the left (Figure c). This is because 
if leading tuples (with higher scores) are more likely to exist, they 
are also more likely to be in top-k, thus making the total scores of 
top-k tuples higher. Moreover, we also observe here that in all 
three cases, the U-Topk result is atypical. 

We next study how the results change when we alter the range 
(i.e., variance) of scores in the table. In the previous experiment in 
Figure 13, we use a bivariate normal distribution with the 
standard deviation of the scores being 60. With other parameters 
being the same as in Figure 13a (i.e., ρ = 0), we only increase the 
standard deviation of the scores σ to be 100. The result is shown 
in Figure 14. It is clear that the distribution of the total scores of 
top-k vectors now covers a wider range, with the span of the 
significant portion of the distribution increased from around 350 
(Figure 13a) to around 1000, making the distance between U-
Topk score and typical scores farther apart. 

Finally, we examine the impact on the results as we vary the 
mutual exclusion (ME) group settings. With everything else being 
the same as in Figure 13a (ρ=0, σ=60), we only change the score 
gaps between two ME tuples. Without changing any scores in the 
table, we only change the assignment of the tuples to ME groups: 
we change the distance between two neighboring tuples in an ME 
group from d1 tuples to d2 tuples, where d1 is a random number 
from 1 to 8 and d2 is a random number from 1 to 40. The result is 
shown in Figure 15. We observe that there is no noticeable 
change from Figure 13a. However, when we increase the size of 

ME groups from s1 to s2 where s1 is a random number of either 2 
or 3, and s2 is a random number from 2 to 10, there are some 
obvious changes in the results, as shown in Figure 16. First of all, 
we observe that the score distribution of top-k vectors covers a 
much wider range but with smaller values. The bulk of the 
distribution is at [200, 1350] compared to the original range of 
[1150, 1550] (Figure 13a), almost three times in width. The 
reason is that because we can only take at most one tuple from 
each ME group to include in top-k, a larger ME group implies that 
we end up scanning more tuples and lower scored tuples have a 
higher chance to be in top-k, which in effect increases the 
variance of the scores of tuples that contribute to the distribution. 
Secondly we observe that because each ME group now contains a 
lot more tuples with small probabilities (they must add up to no 
more than 1), we essentially have an exponential growth in 
possible top-k vectors, all have small probabilities. This makes U-
Topk (which seeks the highest probability) more unstable or 
atypical. Figure 16 shows that in this case the U-Topk result shifts 
to the lower end of the score distribution. 

6. RELATED WORK 
There has been significant work on uncertain data management 
lately due to the importance of emerging applications (e.g., [5, 20, 
3, 17, 1, 12]). Re et al. [15] studied top-k queries on uncertain 
data where the ranking is based on the probability that a result 
tuple appears in the result. The semantics of top-k queries on 
uncertain data with arbitrary ranking functions was first studied 
by Soliman et al. [18]. The authors in [18] gave two kinds of 
semantics (U-Topk and U-kRanks) and devised optimal 
algorithms in terms of the number of accessed tuples and search 
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      Figure 14. ρ=0, but increase σ to 100.     Figure 15. Increasing gaps between ME tuples.  Figure 16. Increasing sizes of ME groups 

 



 

states. Yi et al. [21] improved the time and space efficiency of the 
algorithms that compute U-Topk and U-kRanks results. Hua et al. 
[9] proposed a new semantics called probabilistic threshold top-k 
(PT-k). More recently, Jin et al. [13] studied top-k queries in the 
uncertain data stream setting. 

As discussed in Section 1, we can classify the proposed semantics 
into two categories, both of which are useful for their own 
application scenarios. In this paper, we extend the work in the 
first category and propose new semantics which shifts the 
emphasis more toward ranking scores. As we have discussed, our 
new semantics is useful for many applications that are not 
sufficiently addressed before. 

Zhang and Chomicki [22] proposed the Global-Topk semantics 
which falls into the second category. Interestingly, in the future 
work section of [22], two of the open problems that the authors 
listed are: (1) integrating the strength of preference expressed by 
score into the semantics framework (i.e., existing semantics are 
not as sensitive to score as to probability) and (2) considering 
non-injective scoring functions (ties).  Our work happens to 
address both of these open problems. 

7. CONCLUSIONS 
In this work, we observe the need to shift the emphasis a little 
more on ranking scores, as opposed to the probabilities for many 
applications. We propose to provide the score distribution of top-k 
vectors and c-Typical-Topk answers to applications and devise 
efficient algorithms to cope with the computational challenges. 
We also extend the work to score ties.  Experimental results 
verify our motivation and our approaches. 
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