
Top-k Queries on Uncertain Data: On Score Distribution
and Typical Answers

Tingjian Ge
Computer Science Department

Brown University
Providence, RI, USA

tige@cs.brown.edu

Stan Zdonik
Computer Science Department

Brown University
Providence, RI, USA

sbz@cs.brown.edu

Samuel Madden
CSAIL

MIT
Cambridge, MA, USA

madden@csail.mit.edu

ABSTRACT
Uncertain data arises in a number of domains, including data
integration and sensor networks. Top-k queries that rank results
according to some user-defined score are an important tool for
exploring large uncertain data sets. As several recent papers have
observed, the semantics of top-k queries on uncertain data can be
ambiguous due to tradeoffs between reporting high-scoring tuples
and tuples with a high probability of being in the resulting data
set. In this paper, we demonstrate the need to present the score
distribution of top-k vectors to allow the user to choose between
results along this score-probability dimensions. One option would
be to display the complete distribution of all potential top-k tuple
vectors, but this set is too large to compute. Instead, we propose
to provide a number of typical vectors that effectively sample this
distribution. We propose efficient algorithms to compute these
vectors. We also extend the semantics and algorithms to the
scenario of score ties, which is not dealt with in the previous work
in the area. Our work includes a systematic empirical study on
both real dataset and synthetic datasets.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – query processing.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Top-k, Distribution, Uncertain data, Typical.

1. INTRODUCTION
The need to manage uncertain data arises in many applications.
Some examples include data cleaning, data integration, sensor
networks, pervasive computing, and scientific data management.
For example, acoustic sensors (e.g., microphones) are often used
to detect the presence of objects. Due to the nature of acoustic

sensing, detections produced by microphones are often
ambiguous, with an object possibly being at one of several
locations. A common approach for storing such sensor data is to
produce one record for each of the possible object locations, and
assign a confidence (i.e., probability of existence in a table) to
each record. Often, a query over such data has a large number of
result tuples. In this context, top-k (i.e., ranking) queries have
proven to be useful [11].

Unfortunately, the semantics of ranking in such systems are
unclear, due to the fact that both scores and probabilities of tuples
must be accounted for in the ranking. For example, it is unclear
whether it is better to report highly ranked items with a relatively
low probability of existence or a lower-ranked set of items with a
high probability of existence. Thus, the definition of the semantics
of top-k queries when the data is uncertain is an important issue.
We next look at an example.

0.3125(11, 19)10:502T7

0.558(9, 25)10:503T6

1.056(12, 7)10:494T5

0.380(10, 19)10:502T4

0.4110(9, 25)10:513T3

0.460(10, 19)10:492T2

0.449(10, 20)10:501T1

Conf.Score for
Medical
Needs

LocationTimeSoldier
ID

Tuple
ID

0.3125(11, 19)10:502T7

0.558(9, 25)10:503T6

1.056(12, 7)10:494T5

0.380(10, 19)10:502T4

0.4110(9, 25)10:513T3

0.460(10, 19)10:492T2

0.449(10, 20)10:501T1

Conf.Score for
Medical
Needs

LocationTimeSoldier
ID

Tuple
ID

Figure 1. A table generated by sensors monitoring soldiers’
needs for medical attention. The Conf. (confidence) attribute is

the probability of existence of the tuple.

Example 1. In the War-fighter Physiologic Status Monitoring
application [19], the US military is embedding sensors in a “smart
uniform” that monitors key biological parameters to determine the
physiological status of a soldier. Under the harsh environment of
the battlefield, it is crucial that sufficient medical resources reach
wounded soldiers in a timely manner. Sensors in a smart uniform
monitor thermal signals, hydration levels, cognitive and life signs,
and wound levels. There are a few ways the soldier’s
physiological states can be estimated with different sensors and
with different confidence. An algorithm computes an overall
score indicating how much medical attention the soldier needs
and how urgent his or her condition is. In a central database, as
shown in Figure 1, a table records the information sent out by the
sensors in the soldiers’ uniforms. Each tuple in the table is one

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, RI, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06...$5.00.

estimate with some confidence. Sensors might be broken in harsh
environments. For high availability, there can be two sets of
sensors in a soldier’s uniform in case one of them breaks down or
loses precision. When each sends out an estimate at about the
same time and they are inconsistent, at most one of them can be
correct (together they form a discrete distribution with the
confidence indicating the weight of each). These estimates may
differ considerably due to variations in sensors, the possibility of
lost network messages, and different estimation algorithms. 

100 120 140 160 180 200 220 240
0

0.05

0.1

0.15

0.2

Top-2 total scores

P
ro

ba
bi

lit
y U-Topk returns

this line only

Figure 1 shows tuples that were reported around the same time
and thus estimating the same value for each soldier. T2, T4, and
T7 are readings for soldier 2 and are mutually exclusive (i.e., at
most one of them can be correct), denoted as T2⊕ T4⊕ T7.
Similarly, T3 T6. The last column of the table indicates the
confidence of the estimates. Given such a table, a military staff
may want to query for the top-k soldiers who require the most
medical attention and allocate the appropriate resources to deliver
to the battlefield. For this toy example, we simply look at the top-
2 result. Possible worlds semantics has been used extensively in
this context (e.g., [5]). Figure 2 shows the 18 possible worlds,
their probabilities, and the top-2 tuples in each world according to
the score attribute.

⊕

Recently, there has been some work on the semantics of top-k
queries on uncertain data, starting from the work of Soliman,
Ilyas, and Chang [18]. The proposed semantics roughly fall into
two categories: (1) returning k tuples that can co-exist in a
possible world (i.e., that must follow the mutual exclusion rules)
or (2) returning tuples according to the marginal distribution of
top-k results (e.g., the probability that a tuple is top-k or at a

specific rank in all possible worlds). The U-Topk [18] definition
belongs to category (1) while the U-kRanks [18] and PT-k [9]
definitions belong to (2). In this work, we propose an extension of
the category (1) semantics.

The answer to a U-Topk query is a tuple vector with the highest
probability of being the top-k vector when we consider all
possible worlds. For example, in Figure 2 we find that <T2, T6>
has the highest probability (Pr(W3) + Pr(W4) = 0.2) of being in
top-2 together and thus will be the result of U-Topk (for k = 2).
Notice that U-Topk chooses a k tuple vector based purely on its
probability. We observe three things:

1. Although a returned k-tuple vector has the highest
probability p of being the top-k, p itself can be rather small
(an obvious upper bound on p is the probability that all k
tuples exist in the table), and it may not be much bigger than
the probability of other top-k vectors.

2. The score distribution of the tuples is usually independent of
the distribution of probability values of tuples.

3. U-Topk does not take into consideration the distribution of
the scores of all possible top-k tuple vectors.

As a result of these observations, the total score of a U-Topk
vector can be rather atypical, meaning that the score can vary
dramatically from the expected score in the true top k. Figure 3
shows this fact for our toy example. For the U-Topk vector (k = 2)
<T2, T6>, although it has the highest probability (0.2) of being in
top-2, this probability is not much bigger than other top-2 vectors,
and its total score (118) is atypical, for the following reasons:

1. With probability 0.76, the top-2 result has a higher total
score than that of U-Topk;

2. With probability 0.12 (not much lower than 0.2), the top-2
total score (235) is about twice that of U-Topk; and

3. The expected top-2 total score is 164.1, substantially higher
than the score of the U-Topk vector.

In our soldier example, score is meant to signify the severity of
injury. One could imagine that medical personnel might prefer to
send resource to the units with score 235, as their injuries are
presumably much more severe than those of the U-topk units, and
the probability of the score 235 group is not much less than the U-
topk group.

In Example 1, we intentionally limited the number of tuples and
value of k so that it was feasible to list all possible worlds. But in
reality k is often much bigger. We note that this problem with U-
Topk can be worse when k is bigger (i.e., k > 2). In other words, it
is more likely that U-Topk will return a vector with an atypical
score for large k. This is because for a specific k-tuple vector to be
U-Topk, all k uncertain tuples must appear in the first place,
lowering the probability and increasing the likelihood that the
score is atypical. More specifically, due to the “curse of
dimensionality” [2], no top-k vector likely dominates many
possible worlds (or has a significant probability). If we arbitrarily
increase the score of a tuple that is not in the most probable top-k
vector (e.g., increase the score of T7 which is not in the most
probable vector T2, T6), the U-Topk result can be arbitrarily
atypical.

T4, T60.069 = {T1, T4, T5, T6}

T3, T40.072 = {T3, T4, T5}

T3, T40.048W7 = {T1, T3, T4, T5}

T2, T50.024 = {T2, T5}

T2, T50.016W5 = {T1, T2, T5}

T2, T60.12 = {T2, T5, T6}

T2, T60.083 = {T1, T2, T5, T6}

T3, T20.096 = {T2, T3, T5}

T3, T20.0641 = {T1, T2, T3, T5}

Top-2Prob.ossible world

W

W8

W6

W4

W

W2

W

P

T4, T60.06W9 = {T1, T4, T5, T6}

T3, T40.072 = {T3, T4, T5}

T3, T40.048W7 = {T1, T3, T4, T5}

T2, T50.024 = {T2, T5}

T2, T50.016W5 = {T1, T2, T5}

T2, T60.12 = {T2, T5, T6}

T2, T60.083 = {T1, T2, T5, T6}

T3, T20.096 = {T2, T3, T5}

T3, T20.0641 = {T1, T2, T3, T5}

Top-2Prob.ossible world

W8

W6

W4

W

W2

W

P

T7, T50.018W18 = {T5, T7}

T7, T50.012W17 = {T1, T5, T7}

T7, T60.09W16 = {T5, T6, T7}

T7, T60.06W15 = {T1, T5, T6, T7}

T7, T30.072W14 = {T3, T5, T7}

T7, T30.048W13 = {T1, T3, T5, T7}

T4, T50.018W12 = {T4, T5}

T4, T50.012W11 = {T1, T4, T5}

T4, T60.09W10 = {T4, T5, T6}

Top-2Prob.Possible world

T7, T50.018W18 = {T5, T7}

T7, T50.012W17 = {T1, T5, T7}

T7, T60.09W16 = {T5, T6, T7}

T7, T60.06W15 = {T1, T5, T6, T7}

T7, T30.072W14 = {T3, T5, T7}

T7, T30.048W13 = {T1, T3, T5, T7}

T4, T50.018W12 = {T4, T5}

T4, T50.012W11 = {T1, T4, T5}

T4, T60.09W10 = {T4, T5, T6}

Top-2Prob.Possible world

Figure 2. Possible worlds, their probabilities, and top-2
tuples in each world.

Figure 3. The distribution of top-2 tuples’ total scores.

This dilemma is analogous to the “typical set” concept in
information theory [4]. Example 2 shows that a maximum
probability event can be atypical.

Example 2. Consider a biased coin with head probability 0.6
and tail probability 0.4. Suppose we toss it n = 20 times and
assign a score as the number of heads. Clearly, the outcome with
maximum probability is all heads (score 20) with probability

, which is still a very small value. However,
the score of this outcome is very atypical. In fact, with
overwhelming probability (1−3.66×10-5) we get a score smaller
than 20. It can be shown that we most likely get a score of 12,
with probability

20 5(0.6) 3.66 10−≈ ×

12 8 20!(0.6) (0.4) 0.18.
12! 8!

⋅ ⋅ ≈
⋅

 It can further be

proved that as n increases, with probability approaching 1, we
would get score 0.6·n. The set of outcomes with this score is
called the typical set [4]. �

We shall see more examples of atypical U-Topk answers in the
experiments on real as well as synthetic datasets (Section 5).

We also note that category (2) definitions (U-kRanks and PT-k)
are not suitable for these kinds of applications because the tuples
they return are based on their marginal distributions and do not
follow the constraints of mutual exclusion rules (U-kRanks may
even return the same tuple multiple times if it is the most probable
one for more than one rank position).

Let us step back and examine what the issue really is. The
complete result of a top-k query on uncertain data, in fact, is a
joint distribution on k-tuple vectors. If one were able to return
such a joint distribution, it would represent a complete answer,
and would provide users with a convenient representation of the
tradeoff between probability and score from which they could
select the results of interest. Unfortunately, a complete
distribution is too expensive to compute, as well as to describe
and return as the result. All existing definitions try to provide the
most important information of such a distribution. Category (1)
and (2) definitions are useful in different situations. Category (1)
definitions are needed for scenarios that seek “compatible” k
tuples (i.e., they can co-exist), which is required when, for
instance, further inferences on the whole set of k tuples are
performed, as in our examples. However, as we have observed, by
simple selection of the highest probability, U-Topk may pick a k-
tuple vector that has a highly atypical score. What we propose in
this work is a simple two-fold solution:

(1) The application program can optionally retrieve the
score distribution of top-k vectors at any granularity of
precision (e.g., histograms of any bucket width).

(2) We propose a new definition c-Typical-Topk which
returns c typical top-k tuple vectors according to the
score distribution, where c is a parameter specified by
queries. Intuitively, the actual top-k’s score should be
close to one of the c vectors’ score.

We then address the computational challenge of obtaining the
score distribution of top-k vectors and selecting c typical vectors.
For the score distribution, we first give two simple and naive
algorithms that either explore the state space to reach top-k tuple
vectors (StateExpansion algorithm) or iterate through all k-tuple
combinations within a bounded set of tuples (k-Combo
algorithm). These two algorithms establish a baseline for

comparisons. We then present our main algorithm which is based
on dynamic programming and is much more efficient than the
naive algorithms. The presentation of the main algorithm starts
with the basic framework and is then extended to handle more
complex and realistic scenarios, namely mutually exclusive tuples
and score ties for tuples. Score ties are common when the score is
based on an attribute that does not have many distinct values, e.g.,
year of publication, number of citations, or even non-numeric
attributes [7]. Note that extending the semantics and algorithms to
score ties (i.e., non-injective scoring functions) for uncertain data
can be non-trivial [22] (because a single possible world can now
have multiple top-k vectors) and is not dealt with in previous
work. Once we obtain the score distribution of top-k, using ideas
similar to [8], we apply a two-function recursive approach
resulting in another efficient dynamic programming algorithm to
select c typical vectors for c-Typical-Topk.

We conducted systematic experiments on a real dataset of road
delays in the greater Boston area as measured by the CarTel
project team [10, 14], as well as a synthetic dataset. Through the
experiments, we verify our motivation, study the performance of
our algorithms, and observe interesting behaviors of the results
with different characteristics of data. In summary, the
contributions of this work are:

• A new semantics for presenting the answers of top-k queries
on uncertain data to the applications.

• Efficient algorithms to compute the two entities that can be
returned to applications: the score distribution of top-k
vectors and the c-Typical-Topk answers.

• Extensions of our semantics and algorithms to the realistic
scenario of ties in ranking scores.

• A systematic empirical study on a real world dataset and a
synthetic dataset.

The remainder of the paper is organized as follows. In Section 2,
we present the formal specification of returning score distribution
and c-Typical-Topk and the semantics under score ties. We then
cope with the computational challenges and develop efficient
algorithms to compute score distributions in Section 3 and c-
Typical-Topk in Section 4. Comprehensive experiments are
conducted in Section 5. Finally, we survey related work in
Section 6 and conclude in Section 7.

2. PROBLEM FORMULATION
In this section, we present our data model and formal definitions
of the Topk score distribution and c-Typical-Topk.

2.1 Data Model and Scoring Function
We follow the well-known tuple independent/disjoint data model
from the probabilistic database literature [6, 20, 18, 9]. In this
data model, an uncertain database D contains uncertain tables. An
uncertain table T has an extra attribute that indicates the
membership probability of a tuple in T. If a tuple’s membership
probability is p (0 < p ≤ 1), it has probability p of appearing in the
table and probability 1 – p that it does not appear. Table T also
has a set of mutual exclusion rules. Each rule specifies a set of
tuples which we call an ME group, only one of which can appear
in T. If a tuple has no mutual exclusion constraint, we simply say
that it is in its own ME group (of size 1). The sum of the

probabilities of all tuples in an ME group should be no more than
1. The ME groups are assumed to be independent of each other.

A scoring function s takes a tuple t and return a real number s(t)
as its score. In the previous work, the scoring function s is
assumed to be injective (i.e., each tuple maps to exactly one score,
and no score is shared by two tuples), meaning that ties are not
allowed. In many cases, it is non-trivial to extend the algorithms
in the previous work to handle non-injective scoring functions; in
fact, the result is undefined when there are ties in tuple scores. In
this work, we remove that restriction and allow non-injective
scoring functions.

2.2 Score Distribution and c-Typical-Topk
As discussed in Section 1, the scores of the k-tuple vector
returned by U-Topk can be rather atypical, severely restricting the
usefulness of the U-Topk result. We therefore propose to compute
and provide the distribution of the total scores of top-k tuples.
There are two possible usages of such a distribution:

(1) An application can access the distribution at any granularity
of precision (e.g., histograms of any bucket width).

(2) An application can receive c typical top-k vectors (n.b., c-
Typical-Topk, defined below), where c is a parameter
specified by queries.

Intuitively, c-Typical-Topk returns c top-k vectors (for c ≥ 1) such
that the actual top-k result (drawn according to its distribution) is
close to at least one of the c vectors. When c = 1, the result has a
score that is the expected score of top-k vectors; on the other
hand, a big c value gives c vectors (and their probabilities) that
approach the distribution of all top-k vectors. Put another way,
the ith vector has a score that is approximately i/(c+1) through the
probability distribution of all possible scores.

Definition 1 (c-Typical-Topk scores). Let the distribution of the
total scores of top-k tuples of an uncertain table T be a PMF
(Probability Mass Function) D. We call the set of c scores {s1, s2,
…, sc}, where si (1 ≤ i ≤ c) has non-zero probability in D, the c-
Typical-Topk scores if for a score S ~ D (i.e., randomly chosen
according to D),

1 1
1 2 { ,..., } { ,..., }

{ , , ..., } arg min [min | |]
c i c

c s s s s s is s s E S s
∈

= − �

That is to say, over all choices of the c scores, for a random score
S chosen according to D, |S – si| is minimal in expectation, where
si is the closest score to S among the c scores.

Definition 2 (c-Typical-Topk tuples). We call the set of k-tuple
vectors {v1, v2, …, vc}, where vi (1 ≤ i ≤ c) is a vector of top-k
tuples of T in some possible world, the c-Typical-Topk tuples if

()
arg max Pr(), 1

i i
i is v s

v v
=

= ≤ i c≤

where s1, s2, …, sc are c-Typical-Topk scores, s(vi) is the total
scores of the tuples in vi, and Pr(vi) is the probability that vi is a
top-k tuple vector of T. �

In other words, vi is the most probable top-k tuple vector that has
a total score si (if there is more than one such vector, vi can be any
one of them).

For example, we can find that the 3-Typical-Top-2 scores of the
table in Example 1 is {118, 183, 235}, with an expected distance
6.6 for a random top-2 vector. The 3-Typical-Top-2 vectors are

{(T2, T6), (T7, T6), (T7, T3)}. For comparison, the 1-Typical-
Top-2 vector is (T3, T2), which has a slightly smaller probability
(0.16) than that of the U-Top-2 vector (T2, T6) with probability
(0.2), but has a much more typical score of 170, as opposed to
118 of the U-Top-2.

2.3 Non-injective Scoring Function and Ties
Now we consider the case in which the scoring function s is non-
injective and there can be ties among the scores of the tuples of an
uncertain table. Score ties are common when the score is based on
an attribute that does not have many distinct values, e.g., year of
publication, number of citations, or even non-numeric attributes
[7]. It is also called partial ranking in [7], where the authors
studied combining several ranked lists to produce a single
ranking. We call the set of all tuples that have the same score a tie
group. When a tuple does not have the same score with any other
tuple, it is in a tie group of size one. A tie group in an uncertain
table T contains all uncertain tuples that have the same score; a tie
group in a possible world contains all tuples that appear in that
world and have the same score.

We first discuss what this implies in a single possible world (i.e.,
without uncertainty). In a possible world w, as usual, a top-k tuple
vector still contains a set of k tuples that have the highest scores.
When there are ties, it is likely that there are multiple such top-k
vectors in w, all ending in some tuples from a tie group. We say
that a top-k vector v contains a tie group g if all tuples in g
belongs to v. We say that a top-k vector v partially reaches a tie
group g if at least one but not all tuples in g belong to v. We say
that g contributes m tuples to v if exactly m tuples from g belong
to v. We state the following theorem without proof.

Theorem 1. In a possible world w, all top-k vectors must contain
the same set of tie groups. If there is more than one top-k vector,
they must all partially reach the same tie group g and g
contributes the same number of tuples m to all those vectors. In
fact, there are | |g

m
⎛ ⎞
⎜ ⎟
⎝ ⎠

 such vectors, where |g| is the number of

tuples in g. �

Example 3. We can order the tie groups according to their
scores in descending order. Let us say that g1 = {T2, T6}, g2 =
{T3, T7, T10}, and g3 = {T5, T9, T12} are the three tie groups in a
possible world with the highest scores. Among the three groups,
g1 has the highest score and g3 has the lowest. Suppose we want
to ask for the top-7 tuples. Then there are 3

3
2
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 top-7 tuple

vectors {g1, g2, T5, T9}, {g1, g2, T5, T12}, and {g1, g2, T9, T12},
all containing g1 and g2 but partially reaching g3. g3 contributes 2
tuples to each vector. �

It is clear that all top-k tuple vectors of a possible world have the
same total score. Thus, in terms of the score distribution, ties
would not have any impact: the probability of some score is still
the sum of the probabilities of all possible worlds whose top-k
vectors have that score. For c-Typical-Topk, among possibly
multiple vectors that have some score, we choose one of them
with the highest probability to appear in the uncertain table.

3. COMPUTING SCORE DISTRIBUTION
OF TOP-k
A key challenge is to compute the distribution of the total scores
of top-k tuple vectors. This is inherently computationally
expensive because unlike U-Topk and U-kRanks, this is not really
a search problem (e.g., searching for the highest probability
vector), as, in this case, one must account for all top-k vectors’
scores and probabilities. The goal of such an algorithm is to
output the distribution as a set of (score value, probability) pairs.

3.1 Two Simple Algorithms
We first present two algorithms which establish a baseline for
comparison with the algorithm presented in Section 3.2 and 3.3.
For now, we do not consider non-injective scoring functions and
ties in tuples’ scores; these will be discussed in Section 3.4.
Figure 4 shows the first algorithm, called StateExpansion.

We first initialize the distribution to be an empty set (step 1). S is
a set of states and we initialize it to contain one state – containing
the empty tuple vector ε (step 2). We then go through all tuples in
descending order by score, expanding each current state in S by
either include the new tuple or not. When we reach k tuples for a
state, we add it to the distribution to be returned (step 10). When
the probability of a state gets too small (below a threshold pτ as an
input parameter), it is dropped. Note that the number of (score,
probability) pairs in the output dist could potentially be very
large. Thus, in step (10), we use a coalescing strategy to limit the
size of the output.The details are described in Section 3.2.1. The
StateExpansion algorithm has an exponential cost in the number
of tuples considered (subject to the probability threshold).

We next show a more efficient algorithm. In this algorithm, we
first determine an upper bound on the number of uncertain tuples
that we have to examine when tuples are in rank order by score. A
reasonable stopping condition is that we do not need to consider
tuples that have probability less than pτ being in top-k.

Theorem 2. Given that we do not need to consider any tuple that
has probability less than pτ being in top-k, the stopping condition
of the sequential scan of tuples in rank order by score is at a tuple
t satisfying
 21 11 ln ln 2 lnk k 1

p p pτ τ τ

μ ≥ + + + +

(i.e., we do not need to consider any tuple from t onwards), where
 and T(t) is the set of all tuples ranked higher

than t, except those in t’s ME group. Furthermore, such a
stopping condition also guarantees that no k-tuple vector with
probability pτ or more being in top-k is omitted.

()
Pr()

t T t
tμ

′∈
′= ∑

Proof. We use an existing result from [9]. Theorem 8 of [9] says
that a slightly different condition 21 1ln ln 2 lnk 1k

p p pτ τ

μ ≥ + + +
τ

ensures Pr(t is in top-k) < pτ. We note that μ may not be
monotonically increasing with more tuples because we have to
exclude tuple t’s ME group, which can vary from tuple to tuple.
However, the sum of the probabilities of t’s ME group is no more
than 1. Thus, adding 1 to the right hand side of the inequality
ensures that once the condition is satisfied at some tuple t, it will
always be satisfied for all tuples onwards. We further observe
that for any top-k vector v that contains t, because v is top-k

implies t is in top-k, we must have Pr(v is a top-k vector) ≤ Pr(t is
in top-k) < pτ. Thus, the stopping condition also guarantees that no
k-tuple vector with probability pτ or more being in top-k is
omitted. 

Input: T: an uncertain tuple set in rank order,
 pτ: a probability threshold – note: a top-k vector with
 probability below pτ need not be considered.
Output: The score distribution of top-k vectors.
(1) dist = Φ
(2) S = {ε}
(3) for each t from T do
(4) if S is empty then break end if
(5) S’ = Φ
(6) for each state s in S do
(7) Append t to s and get a new state s1.
(8) Compute s1’s score and probability based on s.
(9) if s1 has k tuples then
(10) Add its score and probability to dist.
(11) else if s1’s probability is greater than pτ then
(12) S’ = S’ ∪ {s1}.
(13) end if
(14) end if
(15) Append t¬ to s and get a new state s2.
(16) Compute s2’s probability.
(17) if s2’s probability is greater than pτ then
(18) S’ = S’ ∪ {s2}.
(19) end if
(20) end for
(21) S = S’
(22) end for
(23) return dist

Figure 4. Algorithm StateExpansion.

Theorem 2 gives us a stopping condition, which also satisfies the
requirement in the StateExpansion algorithm (i.e., no k-tuple
vector with probability pτ or more being in top-k is missed). Note
that we always stop at the end of a tie group because tuples in a
tie group either all satisfy the stopping condition or none does.
Let the number of uncertain tuples we need to consider be n. We
can simply iterate through all k-combinations of the n tuples using
a standard algorithm that generates all k-combinations in
lexigraphical order [16], but exclude those that violate the mutual
exclusion rules. For each k-combination, we can compute its total
score and probability, and eventually we get the distribution. We
call this algorithm k-Combo. Its cost is O(nk).

3.2 The Main Algorithm
We now present our main algorithm, which is based on dynamic
programming. Our presentation is done in several steps. In this
subsection (3.2), we introduce the basic framework of the
algorithm. In Section 3.3 and 3.4, we extend this algorithm to
handle mutually exclusive tuples and score ties, respectively.

Consider the table in Figure 5. The rows correspond to n
(determined by Theorem 2) uncertain tuples in rank order by
score. The columns are labeled from k to 1. A cell at row Ti
column j contains the score distribution of top-j tuples starting
from row Ti. Thus, our goal is to get the distribution in the cell at

the upper left corner of the table (marked with a “?”), i.e., the
score distribution of top-k tuples starting from T1. We first
consider the basic case in which tuples are independent (i.e., no
mutual exclusion rules) and there are no ties in score.

Our goal, the distribution of top-k starting from T1 (upper left
corner cell), can be composed using the distributions of two cells
below it (marked with triangles in Figure 5): the distribution of
top-k starting from T2 (when T1 does not exist) and the
distribution of top-(k-1) starting from T2 (when T1 exists). In
general, the distribution Di,j at row Ti and column j (top-j starting
from Ti) is composed from the distribution Di+1,j at row Ti+1 and
column j (top-j starting from Ti+1) and the distribution Di+1,j-1 at
row Ti+1 and column j-1 (top-(j-1) starting from Ti+1) in the
following way:

(1) For each value and probability pair (v, p) in Di+1,j , we
transform it to (v, p(1－pi)), where pi is the probability
that Ti exists.

(2) For each value and probability pair (v, p) in Di+1,j-1 , we
transform it to (v+si , p·pi), where si is Ti’s score and pi
is the probability that Ti exists.

(3) Merge the value and probability pairs resulting from (1)
and (2) by taking their union except for the following:
if two pairs have the same value, they become one pair
with that value and with the new probability being the
sum of the two original ones.

The right hand side of Figure 5 shows pictorially the merging
process. Since all top-k tuples (there are k of them) must be
among the n tuples T1 to Tn, we only need to fill in the
distributions in the table of Figure 5 between the two dotted lines.
For example, we do not need to get the distribution of top-(k-1)
starting from T1; nor do we need top-2 starting from Tn , etc.

The recursive process described above fills in the table in a
bottom-up manner. For the boundary conditions of the recursion,
we add an auxiliary column 0 at the right border of the table. The
distribution at a cell of column 0 has only one (value, probability)
pair: (0, 1), i.e., score 0 with probability 1. For the a boundary cell
(at row Tn-i+1 and column i, for i = 1, …, k) immediately above the
bottom dotted line, its distribution also has only one (value,
probability) pair:

1 1

, .
nn

j j
j n i j n i

s p
= − + = − +

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∏

In the algorithm we also keep track of one tuple vector for each
(v, p) pair, which is needed for obtaining c-Typical-Topk. The
vector is one (among possibly many) that has score v and has the
highest probability of being the top vector. The recorded tuple
vector is initially empty at column 0 and contains only Tn for the
cell at row Tn and column 1. Thereafter, step (1) of the
distribution merging process does not change the tuple vector
while step (2) prepends Ti to the vector. In step (3), when two
pairs have the same value and get combined, we keep the vector
that has the higher probability.

?
△ △

△△

?

T1
T2

Ti
Ti+1

Tn

k k-1 j-1j 1

s

p

p p

s s
Tn-k

?
△ △

△△

?

T1
T2

Ti
Ti+1

Tn

k k-1 j-1j 1

s

p

p p

s s
Tn-k

3.2.1 The Need for Approximation
Thus far, it appears that the cost of this algorithm is O(kn).
However, there is one potential problem. For a cell at row Ti and
column j (i.e., the distribution of the total scores of top-j starting
from row Ti), there are 1n i

j
− +⎛

⎜ ⎟
⎝ ⎠

⎞ possible combinations that

make up the top-j scores (1 ≤ i ≤ n, 1 ≤ j ≤ k). In the worst case,
each combination has a distinct total score, resulting in a
distribution that has the same number of discrete values (vertical
lines in the PMF) in the cell. Thus, the number of vertical lines of
a distribution is upper bounded by , which is O(nk). Recall

that the distribution merging process described above goes
through each vertical line (v, p), increasing the worst case
complexity of the main algorithm to O(nk). Note that in most
applications, in reality, scores are not too far apart, and total
scores of different combinations are often very close or even the
same. Even if they were all distinct, it would often be unnecessary
to keep all O(nk) lines in the PMF. It is more desirable to have a
slight sacrifice in the accuracy of the distribution in exchange for
a gain in efficiency. Imagine that the range of total scores of top-k
is [smin, smax]. The range can be easily determined: smax is the total
score of T1 to Tk and smin is the total score of Tn-k+1 to Tn since they
are sorted. Note that the span smax – smin is relatively insensitive to
the problem size n. We divide the span into a constant number c’
of same-size intervals (e.g., c’ = 200). Each interval size is δ =
(smax – smin) / c’. Suppose for the application we can coalesce
vertical lines that are no more than δ away from each other in the
distribution (i.e., differ by no more than δ in total scores). Then
the cost to describe the output distribution is a constant.

n
k
⎛ ⎞
⎜ ⎟
⎝ ⎠

Figure 5. Illustrating the basic dynamic programming
algorithm, as explained in the text below.

We call the distribution at row T1 and column k (i.e., upper left
corner) the final distribution and those at other cells intermediate
distributions. We can have a “line coalescing” strategy as follows.
At any intermediate or final distribution, whenever the algorithm
results in more than c’ vertical lines, (1) pick two lines that are
closest to each other and coalesce them into one: the score value
is their average and the probability is their sum; (2) repeat the first
step until we have c’ vertical lines. As for the recorded top vector,
when we coalesce two lines, we keep the tuple vector that has the
higher probability.

We first observe that in the bottom-up process of computing the
dynamic programming table of Figure 5, two lines (v1, p1) and (v2,
p2) in an intermediate distribution are always going to change in a
synchronized way: either they both stay at the same scores (step 1
of the distribution merging process) or the two lines get “shifted”
with the same offset by adding the same score (step 2 of the
merging process). In both cases their probabilities are scaled by
the same factor. Thus, coalescing two lines in an intermediate

distribution effectively is equivalent to coalescing them in the
final distribution since they would have the same distance in
scores, had we not coalesced them in any of the intermediate
distributions.

Secondly, it is not hard to see that the span of any intermediate
distribution is no more than that of the final distribution (smax –
smin). This is because intermediate distributions either only
consider top-j (j < k) or they use a subset of the n tuples. Thus, if
an intermediate distribution has more than c’ lines, by picking the
two lines with minimum distance, we must be coalescing two
lines that are no more than δ apart.

Now given that we have a constant cost of distribution merging,
our basic algorithm so far has O(kn) time complexity. In the next
two subsections, we extend our basic algorithm to more complex
and realistic scenarios in which there are mutual exclusion rules
and possible score ties among tuples.

Note that we do this line coalescing similarly for the
StateExpansion and k-Combo algorithms in Section 3.1 as well.
For example, in step (10) of StateExpansion, we make sure dist
has no more than a constant number of score/probability pairs.
This, however, does not change the complexity of those two
algorithms.

3.3 Handling Mutually Exclusive Rules
The problem gets more complicated when there is correlation
among the tuples. We now describe how to handle mutually
exclusive tuples. The original algorithm would not work in the
presence of mutually exclusive tuples because the final
distribution would be wrong if more than one tuple in an ME
group simultaneously contributes to a top-k score.

3.3.1 Two False Starts
In the bottom-up dynamic programming algorithm, one might
first be tempted to do the bookkeeping of which ME groups have
contributed a tuple to a score (and with what probability). In this
case, we do not add additional tuples from those ME groups into
the intermediate distributions. Unfortunately, this is combinatorial
and is too costly.

Another approach compresses all tuples in a mutually exclusive
set into one tuple. We use the terminology in [9] and call it a rule
tuple. A rule tuple has a composite score and a probability of the
sum of the original tuples. At a row of a rule tuple, step (1) of the
distribution merging process stays the same and step (2) changes
to adding each score/probability of the original tuples of the rule
separately. For example, if a rule tuple has three original tuples,
we do step (2) three times. However, the problem with this
approach is that we have nowhere to place the rule tuple in the
dynamic programming table since it has a composite score.
Wherever we place it, we are unable to compute the probability of
a top-k score correctly because we have lost the information of
exactly which original tuples appear (or do not appear) in a strict
score order.

3.3.2 A Good Start
Although the second strategy above fails, it provides the
following inspiration: suppose we require that the last tuple (i.e.,
the k-th) of the top-k has to be Tn, then the tuples in the dynamic

programming table can be in any arbitrary order (i.e., they do not
have to be ordered by scores as stated earlier). This is because for
any tuple i with a score higher than the last tuple of the top-k, if i
is in the top-k, we simply multiply the current probability by its
probability pi ; if i is not in top-k, we multiply by (1 − pi). The
earlier order requirement simply prevents us from multiplying the
(1 − pi) for any tuple i with a score smaller than the last one in
top-k. But if the last one in top-k is Tn , we know for sure all other
tuples have a higher score. Now without the order constraint, we
can then modify the original tuples in the following way:

(1) Remove all other tuples (if any) that are in the same
ME group as Tn from the table.

(2) Compress all other ME groups into rule tuples and
leave them in any order. Remember the constituent
original tuples’ scores and probabilities for a rule tuple.
A rule tuple also has a probability that is the sum of
those of the constituent tuples.

The next trick ensures that the dynamic programming algorithm
only considers the top-k vectors that end with Tn. Recall that we
added an auxiliary column 0 at the right border of the dynamic
programming table of Figure 5. Each cell in column 0 holds a
distribution (0, 1) – score 0 with probability 1. We call a cell in
column 0 an exit point because it indicates that we do not need to
select any more tuples as top-k from that tuple and below. In order
to only incorporate top-k vectors that end with Tn, all we need to
do is simply “block” those exit points by letting them have a
distribution of (0, 0) instead – score 0 with probability 0. It can be
easily verified that such a distribution cannot be propagated by
the distribution merging process. With that change, the dynamic
programming algorithm can proceed as before.

The change on the distribution merging process to the main
algorithm is the same as that described in the second attempt in
Section 3.3.1.

What we have achieved so far is only the distribution of total
scores of top-k vectors that end with Tn. To get the distribution for
all top-k vectors, an easy extension is simply to repeat this for
each tuple from Tk to Tn (i.e., truncate the dynamic programming
table at each of those tuples and treat them as the last tuple of the
top-k, respectively) and then we merge all the final distributions
together. For a truncated table, an ME group may be truncated as
well. That is, if the table is truncated at Ti (k ≤ i ≤ n), an ME
group now only contains tuples in the remaining table (i.e., from
T1 to Ti). The compression step now applies to the reduced ME
groups.

3.3.3 Refinement
It turns out that we can do better than the simple extension above.
We call a tuple a lead tuple if it is the first one (i.e., with the
highest score) in an ME group. If an ME group has only one tuple
(i.e., not mutually exclusive with any other tuple), that tuple is a
lead tuple. In a score-sorted sequence T1 to Tn, a maximal
contiguous subsequence of lead tuples Ti, Ti+1, …, Tj is called a
lead tuple region. For a subsequence to be maximal, it must be
satisfied that (1) either i = 1 or Ti-1 is not a lead tuple; and (2)
either j = n or Tj+1 is not a lead tuple.

We can see that we do not need to do the dynamic programming
procedure for each tuple. Instead, we only need to do it once for
every lead tuple region and once for every non-lead tuple. This is

because when the dynamic programming table ends with a lead
tuple region, tuples in it behave exactly as independent tuples and
they will not interfere with any other tuples above. Thus, for a
lead tuple region, we can simply do one dynamic programming to
get the score distribution of top-k vectors that end with any tuple
in that lead tuple region. We achieve this by setting the boundary
conditions properly. For the distributions in the cells of the
auxiliary column 0, we set it to be (0, 1) at the rows of a lead
tuple region in question and set it to be (0, 0) for other rows.
Recall that (0, 0) is to block an exit point and (0, 1) is to enable it.
Everything else, including the rule tuple compression, stays the
same. This is illustrated in Figure 6.

Figure 6. One dynamic programming for a lead tuple
region.

With this improvement we can see that the time complexity of our
algorithm that handles mutually exclusive tuples is O(kmn), where
m is the number of tuples (among T1 to Tn) that are mutually
exclusive with other tuples. In many applications, mutually
exclusive tuples are only a small proportion of the total. The
computational cost is proportional to this fraction.

3.4 Handling Ties
In many real applications, the scoring function s is non-injective
which leads to ties among the tuple scores [7]. We discussed the
semantics of top-k vectors and score distributions at the end of
Section 2. We now extend the dynamic programming algorithm
that we have developed so far to take care of the case of score
ties. We shall prove that the following simple extension of the
algorithm satisfies our requirements:

Recall that before, the sort order was on scores. Now, sort
tuples in descending order by (score, probability). When two
tuples have the same score, they are in descending order of
probability; when they have the same probability as well,
break ties arbitrarily.

Aside from this adjustment, the algorithm works the same as
before. The next theorem shows that this modification is correct.

Theorem 3. With the above extension to the dynamic
programming algorithm, we achieve our two goals: (1) we obtain
the correct final score distribution of top-k and (2) among vectors
that have the same score, the one that is captured at the end of the
algorithm is the one with the highest probability.

For the proof of Theorem 3, we first need the following definition
and lemma.

Definition 3 (Configuration of top-k). A configuration of top-k
is a set of (k − g) uncertain tuples plus g tuples from a tie group
in non-increasing score order, with the ending tie group having
the lowest score (the k − g tuples are not in that tie group).

Note that a configuration has a fixed total score and two
configurations may have the same total score. The probability of a
configuration is the probability that such a configuration is the
top-k tuple vector.

Lemma 1. Let A be the set of (k − g) uncertain tuples and T be
the ending tie group of a configuration. Let B be the set of tuples
that have higher scores than those in T but are not in the
configuration. The probability of the configuration is the
probability that (1) tuples in A appear, and (2) those in B do not,
and (3) at least g tuples from T appear.

?
△ △

△△

?

T1
T2

Ti

k k-1 j-1j 1

Lead tuple
region

0

(0, 1)

(0, 0)

auxiliary
column

block exit
points

enable exit
points

?
△ △

△△

?

T1
T2

Ti

k k-1 j-1j 1

Lead tuple
region

0

(0, 1)

(0, 0)

auxiliary
column

block exit
points

enable exit
points

Proof (Lemma 1). Clearly, (1) and (2) must be true for the
configuration to be top-k. Except for the case that fewer than g
tuples from T appear, this configuration will be top-k. Thus, we
have (3). 

Proof (Theorem 3). A top-k score distribution is made up of
different configurations. Therefore, to prove goal (1) of Theorem
3, we only need to show that our algorithm computes the
probability correctly for each configuration.

For the ending tie group T of a configuration, our algorithm puts
the tuples in probability descending order. In fact, we can see that
for any arbitrary order, as long as it is fixed, the dynamic
programming will compute the probability of the configuration
correctly. Let the ending tie group T have t tuples in total: T1, T2,
…, Tt in some fixed order. The event (3) in Lemma 1 (i.e., at least
g tuples from T appear) can be decomposed into t

g
⎛ ⎞
⎜ ⎟
⎝ ⎠

 sub-events

as follows. Imagine a t-bit binary string. We choose g bits and set
them to 1; the other bits are all 0. Clearly there are t

g
⎛ ⎞
⎜ ⎟
⎝ ⎠

 such

strings. We use each of them to construct a sub-event: we truncate
the string at the last 1 bit; then starting from the 1st bit until the
last bit (which is 1), if the i’th bit is 1 (or 0), we add “Ti appears”
(or “Ti does not appear”, respectively) into the sub-event. It is
easy to see that the dynamic programming procedure computes
the probability of each such sub-event and adds them up to be the
probability of the event (3) in Lemma 1. Thus, the algorithm
computes the probability of the configuration correctly and we
finish the proof of goal (1) of Theorem 3.

Example 4. Consider the scenario that the first seven uncertain
tuples are:
(T1, 10, 0.5),
(T2, 8, 0.3), (T3, 8, 0.2), (T4, 8, 0.1),
(T5, 7, 0.5), (T6, 7, 0.4), (T7, 7, 0.2).
That is, T1 has score 10 and probability 0.5, and so on. Consider
a top-5 configuration c that includes T1, T2, T4, and two tuples
from the tie group g = {T5, T6, T7}. Then

Pr(c) = Pr(T1)Pr(T2)(1−Pr(T3))Pr(T4)Pr(≥ 2 tuples in g appear)

We can compute that Pr(≥ 2 tuples in g appear) = 0.5·0.4·0.2 +
0.5·0.4·(1−0.2) + 0.5·(1−0.4)·0.2 + (1−0.5)·0.4·0.2 = 0.3. On the
other hand, our dynamic programming algorithm will calculate
the probability of this part of c to be: 0.5·0.4 + 0.5·(1−0.4)·0.2 +

(1−0.5)·0.4·0.2 = 0.3 as well. Thus, our algorithm computes the
probability of the configuration c correctly.

We next show that our algorithm achieves goal (2), i.e., the vector
recorded is the one with the highest probability. Note that the
algorithm may not compute the probability correctly for all
vectors in a top-k configuration, but it does compute it correctly
for the one with the highest probability, due to the fact that we
order the probability in non-increasing order in the ending tie
group. In Example 4, our algorithm computes the probability of
the vector that ends with T5 and T6 correctly: 0.5·0.4 = 0.2 (for the
part in tie group g). On the other hand, for the vector ending with
T5 and T7, the algorithm computes 0.5·(1−0.4)·0.2 = 0.06, but the
actual probability should be 0.5·0.2 = 0.1. This is fine because we
only need to return the vector that has the maximum probability.

Note that the extension of our algorithm to handle mutually
exclusive tuples as discussed in Section 3.3 would not affect the
results of our proof above. This is because for a given
configuration of top-k, after removing tuples in set T that are
mutually exclusive with any tuple in set A (sets T and A as
defined in Lemma 1), our proof holds in the same way. This
concludes the proof of Theorem 3. 

It is not hard to see that the same method can be applied to the
algorithm StateExpansion in Section 3.1 as well to handle score
ties: we just need to sort the tuples in (score, probability)
descending order.

4. COMPUTING c-TYPICAL-TOPk
Given a distribution of the total scores of top-k vectors as
computed in Section 3, we now study how to compute c-Typical-
Topk vectors. We first formalize the problem. Let the score
distribution be {(s1, p1), (s2, p2), …, (sn, pn)} and each score si (1 ≤
i ≤ n) is associated with a top-k tuple vector vi . The vector vi is
the one with the highest probability of being top-k, among those
having the same total score. Our goal is to choose from the n
vectors and output c of them such that their scores satisfy the
optimality requirement in Definition 1. We call si a typical score
if its vector is chosen by the algorithm.

Using ideas similar to [8], we can derive an efficient O(cn) time
dynamic programming algorithm to solve this combinatorial
optimization problem. We use a two function recursive approach.
Let Fa(j) be the optimal objective value of the subproblem
reduced to the set {sj, …, sn}, for j = 1, …, n, where a is the
maximum number of typical scores and let Ga(j) be the respective
value for the same subproblem, provided that sj is a typical score.
We have, for j = 1, …, n, and a ≤ c,

1
1

1

() min () () (1)

() min () () (2)

k
a a

b k bj k n b j

k
a a

b b jj k n b j

F j p s s G k

G j p s s F k

≤ ≤
=

−
−

< ≤ +
=

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

∑

∑

In equation (1), k iterates over the possible first typical score’s
positions, and in (2), k is the first position that is closest to the
second typical score (i.e., sj to sk-1 are closest to the first typical
score, sj). The solution for our original problem is thus given by
Fc(1). The boundary conditions are

1() (), 1, ..., , (1) 0, 1 (3
n

a
b b j

b j
G j p s s j n F n a

=

= − = + = ≥∑)

Input: A top-k score distribution (si , pi , vi), 1 ≤ i ≤ n, where
si is a score, pi is its probability, and vi is a top-k tuple vector
that has score si and has the highest probability; an integer c
Output: c tuple vectors that are c-Typical-Topk.
(1) P[0] = PS[0] = 0
(2) for j = 1 to n do
(3) P[j] = P[j-1] + pj
(4) PS[j] = PS[j-1] + pj*sj
(5) endfor
(6) for j = 1 to n do
(7) G[1][j] = 0
(8) for b = j to n do
(9) G[1][j] = G[1][j] + pb*(sb − sj)
(10) endfor endfor
(11) for a = 1 to c do
(12) F[a][n+1] = 0
(13) endfor
(14) a = 1
(15) for j = 1 to n do
(16) F[a][j] = MAX_DOUBLE
(17) f[a][j] = 0
(18) for k = j to n do
(19) tmp = (P[k] – P[j-1])*sk − PS[k] + PS[j-1]+G[a][k]
(20) if tmp < F[a][j] then
(21) F[a][j] = tmp
(22) f[a][j] = k
(23) endfor endfor endif
(24) for a = 2 to c do
(25) for j = 1 to n do
(26) G[a][j] = MAX_DOUBLE
(27) g[a][j] = 0
(28) for k = j+1 to n+1 do
(29) tmp = PS[k-1] − PS[j-1] − (P[k-1] − P[j-1])*sj +

F[a-1][k]
(30) if tmp < G[a][j] then
(31) G[a][j] = tmp
(32) g[a][j] = k
(33) endfor endfor endif
(34) Do the for loop between line (15) and (23)
(35) endfor
(36) k = 1
(37) for a = c down to 1 do
(38) i = f[a][k]
(39) output vi
(40) k = g[a][i]
(41) endfor

Figure 7. The algorithm to select c-Typical-Topk.

We define, for j = 1, …, n,

1 1
() , () (4)

j j

b b b
b b

P j p PS j p s
= =

= =∑ ∑

Then we can rewrite (1) and (2) as

1

1

() min (() (1)) () (1) () (5)

() min (1) (1) ((1) (1)) () (6)

a a
kj k n

a a
jj k n

F j P k P j s PS k PS j G k

G j PS k PS j P k P j s F k
≤ ≤

−

< ≤ +

⎡= − − − + − +⎣

⎡= − − − − − − − +⎣

⎤⎦

⎤⎦

With some preprocessing of (4) that takes O(n) time, we can first
get all P(j) and PS(j) values. Then the dynamic programming
algorithm based on (5) and (6) will just take O(cn) time.

We show the algorithm in Figure 7. We first pre-compute all the
P(j) and PS(j) values (lines 1 to 5). Lines 6 to 13 set the boundary
conditions according to Equation (3). Lines 14 to 35 iteratively
apply Equation (5) and (6) in turn to fill in the two dynamic
programming tables (i.e., all F and G values). Note that f and g
values (lines 22 and 32) keep track of the k values that minimize
the r.h.s. of Equations (5) and (6). This is needed to trace back
and output the c typical top-k tuple vectors (lines 36 to 41).

Note that a user could examine the edit distances [24] between the
vectors and potentially try different values of c. Once the dynamic
programming that computes the score distribution is performed,
the database system has finished the majority of the computation
and contains the whole distribution and associated vectors.
Changing the c value only implies a re-computation of the
algorithm in this section, which is much cheaper. The magnitude
of the distances indicates the span of the k-dimensional vector
space. Smaller distances indicate that the result is less uncertain
while bigger distances indicate larger uncertainty. Depending on
the application, a user can do different things with the result. For
example, in the Soldier Physiologic Status Monitoring application
(Example 1), medical personnel would probably examine the high
score range of the distribution since a score indicates the severity
of injury. A different application might weight the probability
values more.

5. EMPIRICAL STUDY
In this section, we conducted a systematic empirical study
addressing the following questions:

• What does the score distribution of top-k tuple vectors look
like for real-world data? Furthermore, where does the U-
Topk vector stand in the distribution, and where do c-typical
vectors stand in the distribution?

• What is the performance of our main algorithm that
computes the score distribution? How does it compare with
StateExpansion and k-Combo? What are the scan depth (i.e.,
the number of tuples n that need to be read by our
algorithms) values for various k values as determined by
Theorem 2? How does the proportion of mutually exclusive
tuples affect performance? By trading off accuracy for
performance, how does the line coalescing strategy presented
in Section 3.2 improve performance?

• What is the impact on score distribution and typicality of U-
Topk as we alter the following system parameters: (1) the
correlation between scores and confidence, (2) the score
range (variance), (3) the score range within ME groups and
the size of ME groups?

5.1 Setup and Datasets
We performed the study using the following two datasets:

• A real-world dataset collected by the CarTel project team
[10]. It consists of measurement of actual traffic delays on

roads in the greater Boston area performed by the CarTel
vehicular testbed [14], a set of 28 taxis equipped with
various sensors and a wireless network.

• A synthetic dataset generated using the R-statistical package
[23]. With the synthetic dataset we can control the various
parameters of the data and study their impact on results.

We implemented all the algorithms presented in this paper and the
U-Topk algorithm presented in [18] to study the results. All the
experiments were conducted on a 1.6GHz AMD Turion 64
machine with 1GB physical memory and a TOSHIBA
MK8040GSX disk.

5.2 Results on the Real-world Dataset
In the first experiment, we examine the score distribution of top-k
tuple vectors as computed by the main algorithm presented in the
paper using the CarTel data. We execute the following query over
some random areas taken from the whole dataset:

SELECT segment_id,
 speed_limit / (length / delay) AS congestion_score
FROM area
ORDER BY congestion_score DESC
LIMIT k
Each tuple of the relation area is a measurement record of the
actual travel delay of a road segment. In this query, we define

_ lim_ ,
/

speed itcongestion score
length delay

= where the denominator is the

actual travel speed and the numerator is the speed limit of the
road segment. Thus, the congestion score is an indication of the
travel speed degradation at a road segment (up to a constant
factor: in the dataset, the speed_limit is in km/hour while the
length is in meters and delay is in seconds). A higher congestion
score implies a more congested road segment. The query selects
the top-k most congested road segments in an area (say, a city).
City planners might want to first locate the k most congested
roads and their total (or equivalently, average) scores to give them
an idea of how serious the situation is. For example, when the
total scores exceed some threshold, the city planners will spend
some funding to fix the traffic problem on the most congested
road segments (e.g., by adjusting traffic light cycles, adding
parallel roads or widening existing ones). Each road segment
contains one or more measurement record. In general, each record
is considered uncertain and the delay of a road segment is
probabilistic [14]. If a road segment contains multiple
measurements, we bin the samples and collect the statistics of the
frequencies of the bins and obtain a discrete distribution, in which
each bin is assigned a value that is the average of the samples
within the bin. Bins in a distribution are mutually exclusive so
that at most one of them may be selected in a possible world.
Thus, a top-k tuple vector always contains distinct road segments.

Figure 8 shows the distributions of the total congestion scores of
top-k roads at three random areas from the dataset. We use our
main algorithm presented in Section 3.2 to 3.4 to compute the
score distributions and the algorithm in Section 4 to compute c-
Typical-Topk. We also examine where the resulting vector from
the U-Topk algorithm [18] stands in the distribution. We show the
U-Topk result as a solid (red) arrow and the three dotted arrows
are 3-Typical-Topk results. The height of an arrow roughly
indicates the probability of the corresponding k-tuple vector. We

can see that in all three subplots, the score of the U-Topk result is
rather atypical. In Figure 8 (a) and (b) it is higher than the three
typical scores while in Figure 8 (c) it is lower. Although being the
highest probability vector, the U-Topk result still has a very small
probability, and it may only be slightly bigger than many other k-
tuple vectors. By the definition of c-Typical-Topk, the actual top-
k vector (drawn according to its distribution) is more likely to
have a score that is close to one of the c typical vectors. Informed
by the score distribution and typical vectors, the city planners will
have a much more accurate picture of how serious the top-k most
congested road segments are.

5.3 Performance on the Real-world Dataset
In the second experiment, we examine the performance of our
algorithms. We run the same query as shown in Section 5.2, but
try different system parameters. Since the performance of both
our main algorithm and k-Combo relies on the scan depth n as
determined by Theorem 2, it is interesting to study what are the
actual values of n for various k’s with the real-world dataset. We
set pτ to be 0.001. Figure 9 shows the result that n grows roughly
linearly with k as is expected from the theorem.

We next compare the performance of our main algorithm that
computes the score distribution with the two simple algorithms
presented in Section 3.1, namely StateExpansion and k-Combo.
For all three algorithms, we limit the number of lines in the output
distribution to be more than 100. We try different k values in the
query and compare the execution times of the three algorithms, as
shown in Figure 10. We can see that both State-Expansion and k-
Combo have an exponential growth on the running time as k
increases, with k-Combo being slightly better. On the other hand,

our main algorithm which uses dynamic programming techniques
is significantly more efficient.

0 50 100 150 200 250 300 350 400
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Congestion scores of top-5

Pr
ob

ab
ili

ty

U-Topk3-Typical

0 50 100 150 200 250 300 350 400 450
0

0.005

0.01

0.015

0.02

0.025

0.03

Congestion scores of top-5

Pr
ob

ab
ilit

y

U-Topk3-Typical

150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Congestion scores of top-10

Pr
ob

ab
ili

ty

U-Topk 3-Typical

 (a) (b) (c)

 Figure 8. Congestion score distribution of top-k tuple vectors in three random areas and the results of U-Topk and 3-Typicals.

10 20 30 40 50 60
50

100

150

200

250

k

sc
an

 d
ep

th
 (n

)

10 20 30 40 50 60
10-1

100

101

102

103

k

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Main algorithm
StateExpansion
k-Combo

0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

ME tuple portion
E

xe
cu

tio
n

tim
e

(s
ec

on
ds

)
100 200 300 400 500

0

1

2

3

4

Maximum number of lines

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

 Figure 9. k vs. scan depth (n) Figure 10. k vs. execution time Figure 11. ME portion vs. time Figure 12. # of lines vs. time

Next we examine the performance of our main algorithm as we
vary the portion of mutually exclusive tuples by first selecting a
subset of road segment records and run our query against it. The
result is shown in Figure 11. As expected, the computation cost
increases as we increase the portion of tuples that are mutually
exclusive with other tuples, as discussed in Section 3.3.

Finally, recall that in Section 3.2 we devised a line coalescing
strategy in order to trade off accuracy for performance. The
parameter here is the maximum number of lines allowed in the
distributions. We vary this parameter from 50 up to 500 and the
result is shown in Figure 12. We can see that the runtime varies
linearly as the number of lines grows. The reason is that as the
dynamic programming algorithm progresses bottom-up, very soon
line coalescing takes effect, and the amount of computation
thereafter is proportional to the number of lines in the
distributions.

5.4 Results on the Synthetic Dataset
In this section, we use synthetic datasets because they give us
control over various characteristics of the data. We further
examine the impact of different kinds of data on score distribution
and on how typical U-Topk results are. We first study different
correlations between score and probability of tuples. We generate
scores and probabilities as bivariate normal distributions with
different correlation coefficients for the cases of independence (ρ
= 0), positive correlation (we use ρ = 0.8), and negative
correlation (we use ρ = −0.8). We show the top-10 results for
these three cases in Figure 13 (a), (b), and (c) respectively. We

800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Scores of top-k vectors

P
ro

ba
bi

lit
y

800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

0.12

Scores of top-k vectors

P
ro

ba
bi

lit
y

800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

Scores of top-k vectors

P
ro

ba
bi

lit
y

U-Topk3-Typical U-Topk3-Typical U-Topk3-Typical

 (a) (b) (c)

Figure 13. Score distribution of top-10, U-Topk, and 3-Typical for different score & probability correlations: ρ=0 (a), 0.8 (b), -0.8(c).
0.12 0.09 0.08

can see that compared to the independence case (Figure a), a
positive correlation between scores and probabilities shifts the
score distribution of top-k vectors to the right (Figure b) while a
negative correlation shifts it to the left (Figure c). This is because
if leading tuples (with higher scores) are more likely to exist, they
are also more likely to be in top-k, thus making the total scores of
top-k tuples higher. Moreover, we also observe here that in all
three cases, the U-Topk result is atypical.

We next study how the results change when we alter the range
(i.e., variance) of scores in the table. In the previous experiment in
Figure 13, we use a bivariate normal distribution with the
standard deviation of the scores being 60. With other parameters
being the same as in Figure 13a (i.e., ρ = 0), we only increase the
standard deviation of the scores σ to be 100. The result is shown
in Figure 14. It is clear that the distribution of the total scores of
top-k vectors now covers a wider range, with the span of the
significant portion of the distribution increased from around 350
(Figure 13a) to around 1000, making the distance between U-
Topk score and typical scores farther apart.

Finally, we examine the impact on the results as we vary the
mutual exclusion (ME) group settings. With everything else being
the same as in Figure 13a (ρ=0, σ=60), we only change the score
gaps between two ME tuples. Without changing any scores in the
table, we only change the assignment of the tuples to ME groups:
we change the distance between two neighboring tuples in an ME
group from d1 tuples to d2 tuples, where d1 is a random number
from 1 to 8 and d2 is a random number from 1 to 40. The result is
shown in Figure 15. We observe that there is no noticeable
change from Figure 13a. However, when we increase the size of

ME groups from s1 to s2 where s1 is a random number of either 2
or 3, and s2 is a random number from 2 to 10, there are some
obvious changes in the results, as shown in Figure 16. First of all,
we observe that the score distribution of top-k vectors covers a
much wider range but with smaller values. The bulk of the
distribution is at [200, 1350] compared to the original range of
[1150, 1550] (Figure 13a), almost three times in width. The
reason is that because we can only take at most one tuple from
each ME group to include in top-k, a larger ME group implies that
we end up scanning more tuples and lower scored tuples have a
higher chance to be in top-k, which in effect increases the
variance of the scores of tuples that contribute to the distribution.
Secondly we observe that because each ME group now contains a
lot more tuples with small probabilities (they must add up to no
more than 1), we essentially have an exponential growth in
possible top-k vectors, all have small probabilities. This makes U-
Topk (which seeks the highest probability) more unstable or
atypical. Figure 16 shows that in this case the U-Topk result shifts
to the lower end of the score distribution.

6. RELATED WORK
There has been significant work on uncertain data management
lately due to the importance of emerging applications (e.g., [5, 20,
3, 17, 1, 12]). Re et al. [15] studied top-k queries on uncertain
data where the ranking is based on the probability that a result
tuple appears in the result. The semantics of top-k queries on
uncertain data with arbitrary ranking functions was first studied
by Soliman et al. [18]. The authors in [18] gave two kinds of
semantics (U-Topk and U-kRanks) and devised optimal
algorithms in terms of the number of accessed tuples and search

800 1000 1200 1400 1600 1800 2000 2200
0

0.02

0.04

0.06

0.08

0.1

Scores of top-k vectors

P
ro

ba
bi

lit
y

1000 1100 1200 1300 1400 1500 1600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Scores of top-k vectors

P
ro

ba
bi

lit
y

0 200 400 600 800 1000 1200 1400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Scores of top-k vectors

P
ro

ba
bi

lit
y

U-Topk3-Typical U-Topk3-Typical 3-TypicalU-Topk

 Figure 14. ρ=0, but increase σ to 100. Figure 15. Increasing gaps between ME tuples. Figure 16. Increasing sizes of ME groups

states. Yi et al. [21] improved the time and space efficiency of the
algorithms that compute U-Topk and U-kRanks results. Hua et al.
[9] proposed a new semantics called probabilistic threshold top-k
(PT-k). More recently, Jin et al. [13] studied top-k queries in the
uncertain data stream setting.

As discussed in Section 1, we can classify the proposed semantics
into two categories, both of which are useful for their own
application scenarios. In this paper, we extend the work in the
first category and propose new semantics which shifts the
emphasis more toward ranking scores. As we have discussed, our
new semantics is useful for many applications that are not
sufficiently addressed before.

Zhang and Chomicki [22] proposed the Global-Topk semantics
which falls into the second category. Interestingly, in the future
work section of [22], two of the open problems that the authors
listed are: (1) integrating the strength of preference expressed by
score into the semantics framework (i.e., existing semantics are
not as sensitive to score as to probability) and (2) considering
non-injective scoring functions (ties). Our work happens to
address both of these open problems.

7. CONCLUSIONS
In this work, we observe the need to shift the emphasis a little
more on ranking scores, as opposed to the probabilities for many
applications. We propose to provide the score distribution of top-k
vectors and c-Typical-Topk answers to applications and devise
efficient algorithms to cope with the computational challenges.
We also extend the work to score ties. Experimental results
verify our motivation and our approaches.

8. ACKNOWLEDGMENTS
We wish to thank the anonymous referees for several comments
and suggestions that have improved the paper. This work was
supported by the NSF, under the grants IIS-0086057, IIS-
0325838, and IIS-0448124.

9. REFERENCES
[1] L. Antova, T. Jansen, C. Koch, D. Olteanu. Fast and Simple

Relational Processing of Uncertain Data. In ICDE, 2008.
[2] R. Bellman. Dynamic Programming. Princeton Univ. Press,

1957.
[3] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating

probabilistic queries over imprecise data. In SIGMOD, 2003.
[4] T. Cover and J. Thomas. Elements of Information Theory. A

Wiley-Interscience Publication, 1991.
[5] N. Dalvi and D. Suciu. Efficient Query Evaluation on

Probabilistic Databases. In VLDB, 2004.

[6] N. Dalvi and D. Suciu. Management of Probabilistic Data:
Foundations and Challenges. In PODS, 2007.

[7] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee.
Comparing and Aggregating Rankings with Ties. In PODS,
2004.

[8] R. Hassin and A. Tamir. Improved complexity bounds for
location problems on the real line. In Operations Research
Letters, 1991.

[9] M. Hua, J. Pei, W. Zhang, X. Lin. Ranking Queries on
Uncertain Data: A Probabilistic Threshold Approach. In
SIGMOD, 2008.

[10] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko,
E. Shih, H. Balakrishnan, and S. Madden. CarTel: A
Distributed Mobile Sensor Computing System. In SenSys,
2006.

[11] I. Ilyas, G. Beskales, and M. Soliman. A Survey of Top-k
Query Processing Techniques in Relational Database
Systems. In ACM Computing Surveys, Vol. 40, 2008.

[12] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, and P.
Haas. MCDB: A Monte Carlo Approach to Managing
Uncertain Data. In SIGMOD, 2008.

[13] C. Jin, K. Yi, L. Chen, J. Yu, X. Lin. Sliding-Window Top-k
Queries on Uncertain Streams. In VLDB, 2008.

[14] S. Lim, H. Balakrishnan, D. Gifford, S. Madden, D. Rus.
Stochastic Motion Planning and Applications to Traffic. In
WAFR, 2008.

[15] C. Re, N. Dalvi and D. Suciu. Efficient Top-k Query
Evaluation on Probabilistic Data. In ICDE, 2007.

[16] K. Rosen. Discrete Mathematics and Its Applications. 1995.
[17] P. Sen and A. Deshpande. Representing and Querying

Correlated Tuples in Probabilistic Databases. In ICDE, 2007.
[18] M. Soliman, I. Ilyas, and K. Chang. Top-k Query Processing

in Uncertain Databases. In ICDE, 2007.
[19] N. Tatbul, M. Buller, R. Hoyt, S. Mullen, S. Zdonik.

Confidence-based Data Management for Personal Area
Sensor Networks. In DMSN, 2004.

[20] J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. In CIDR, 2005.

[21] K. Yi, F. Li, G. Kollios, D. Srivastava. Efficient Processing
of Top-k Queries in Uncertain Databases with x-Relations.
In TKDE, 2008.

[22] X. Zhang and J. Chomicki. On the Semantics and Evaluation
of Top-k Queries in Probabilistic Databases. In DBRank’08.

[23] The R Project for Statistical Computing: www.r-project.org.
[24] http://en.wikipedia.org/wiki/Edit_distance.

	1. INTRODUCTION
	2. PROBLEM FORMULATION
	2.1 Data Model and Scoring Function
	2.2 Score Distribution and c-Typical-Topk
	2.3 Non-injective Scoring Function and Ties

	3. COMPUTING SCORE DISTRIBUTION OF TOP-k
	3.1 Two Simple Algorithms
	3.2 The Main Algorithm
	3.2.1 The Need for Approximation

	3.3 Handling Mutually Exclusive Rules
	3.3.1 Two False Starts
	3.3.2 A Good Start
	3.3.3 Refinement

	3.4 Handling Ties

	4. COMPUTING c-TYPICAL-TOPk
	5. EMPIRICAL STUDY
	5.1 Setup and Datasets
	5.2 Results on the Real-world Dataset
	5.3 Performance on the Real-world Dataset
	5.4 Results on the Synthetic Dataset

	6. RELATED WORK
	7. CONCLUSIONS
	8. ACKNOWLEDGMENTS
	9. REFERENCES

