Compression and Query Execution within Column Oriented
Databases
by
Miguel C. Ferreira

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Electrical Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2005

(© Massachusetts Institute of Technology 2005. All rights reserved.

AT
Department of Electrical Engineering and Computer Science
May 19, 2005

Certifled Dy ..o
Samuel Madden

Assistant Professor, Theses Supervisor

Thesis Supervisor

Accepted Dy ..o
Professor Arthur C. Smith
Chairman, Department Committee on Graduate Theses

Compression and Query Execution within Column Oriented Databases
by
Miguel C. Ferreira

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2005, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Computer Science and Electrical Engineering

Abstract

Compression is a known technique used by many database management systems(“DBMS”) to increase
performance[4, 5, 14]. However, not much research has been done in how compression can be used within
column oriented architectures. Storing data in column increases the similarity between adjacent records,
thus increase the compressibility of the data. In addition, compression schemes not traditionally used in
row-oriented DBMSs can be applied to column-oriented systems.

This thesis presents a column-oriented query executor designed to operate directly on compressed data.
We show that operating directly on compressed data can improve query performance. Additionally, the
choice of compression scheme depends on the expected query workload, suggesting that for ad-hoc queries
we may wish to store a column redundantly under different coding schemes. Furthermore, the executor
is designed to be extensible so that the addition of new compression schemes does not impact operator
implementation. The executor is part of a larger database system, known as CStore [10].

Thesis Supervisor: Samuel Madden
Title: Assistant Professor, Theses Supervisor

Acknowledgments

The implementation of the executor was a large team project. Daniel Abadi and I worked together in defining
the details of the CStore executor and its subsequent implementation. To Daniel a big thanks for the many
long nights spend coding, writing and thinking! about CStore. Part of the same team was Edmond Lau,
who designed the aggregation operators and was involved in many of our discussions. Involved in an earlier
implementation of the executor was Amerson Lin.

I would also like to thank Professor Michael Stonebraker for the conception of CStore, and my advisor
Professor Samuel Madden for his prompt reviews of our ideas and our discussions. Thanks Sam for all your
help over the last couple of terms and all the last minute reviewing. It was a pleasure to work for you this
last year.

CStore is a large, inter-university project, and I would like to thank the rest of the CStore team for their
ideas and input. In particular, I would like to thank Alexander Rasin and Xuedong Chen for their help with
implementation, as well as Betty O’Neil for her code reviews.

I wish the CStore team and the CStore project the very best.

land dreaming too...

Contents

1 Introduction
2 Design Overview
2.1 Column Stores e
2.1.1 Benefits of Column Store
2.2 Compression e e e e
2.3 Compression in a Column Store e
3 Compression Schemes
3.1 Storage Optimizations L e
3.2 Light Weight schemes e
3.2.1 Run Length Encoding
3.2.2 Delta Coding e
3.2.3 Simple Dictionary Coding L
3.3 Heavy Weight Schemes e
331 LZO . . . e
3.4 Picking a compression scheme Lo L
3.5 Properties of Column Compression
4 Storage model for CStore
5 Software Architecture
5.1 Blocks L e
5.1.1 Value Blocks e
5.1.2 BasicBlocks e
5.1.3 RLEBlocks e
5.1.4 DeltaPosBlocks e

11
11
14
16
19

21
21
22
22
23
25
26
26
27
27

31

5.1.5 DeltaValBlocks e e e

5.1.6 Position Blocks
5.2 0perators e
5.2.1 Aggregation e
5.2.2 Nested Loop Join e
5.3 Writing Blockso
5.4 Datasources oL e e
5.4.1 Predicates e
5.4.2 Value Filters e
5.4.3 Position Filters
5.5 Lower Layer Primitives. e
5.5.1 Encoding and Decoding e
5.5.2 Reading and Writing Bits o
5.6 Final note on Software Architecture
Results
6.1 Micro-Benchmarks: Developing a cost model for lower level operations
6.1.1 Performance of Berkeley DB indexes
6.1.2 Decompression COstSo e e e
6.2 CStore Performance compared with Commercial DBMSs
6.2.1 Analysisof Costs
6.3 Operating Directly on Compressed Data
6.4 Result Summary L e

Related Work

Future Work
8.1 Optimizer e e e e
8.2 Executor s e

9 Conclusion

47
47
47
48
50
92
56
58

59

61
61
61

63

Chapter 1

Introduction

Compression is a technique used by many DBMSs to increase performance[4, 5, 14]. Compression improves
performance by reducing the size of data on disk, decreasing seek times, increasing the data transfer rate and
increasing buffer pool hit rate. The I/O benefits of compression can substantially outweigh the processor
costs associated with decompression, particularly in the case of light weight compression schemes, such as run
length encoding [5, 19, 2], which reduces data size by eliminating repeated adjacent values. In most database
systems[19, 5, 15, 6] compression is simply an optimization on disk storage. Compressed pages are read from
disk, decompressed in memory and is then presented to the query executor. Some systems [4, 5, 19] include
lazy decompression where data is only decompressed if it is needed by the query executor. This improves
performance as processor time is not unnecessarily wasted decompressing unused data. This thesis presents
the CStore query executor, a query executor designed to always operate directly on compressed data. By
operating directly on compressed data we are able to completely eliminate the decompression cost, lower
the memory requirements on the system and exploit the structure of compressed data to improve the overall
performance.

CStore [10] is a column-oriented database currently under development. Column oriented databases
(”column stores”) differ from row oriented databases ("row stores”) in the layout of data on disk. In a
column store each value of an attribute (column) is stored contiguously on disk; in a row store the values
of each attribute in a tuple are stored contiguously. Column stores work more naturally with compression
because compression schemes capture the correlation between values; therefore highly correlated data can
be compressed more efficiently than uncorrelated data. The correlation between values of the same attribute
is typically greater than the correlation between values of different attributes. Since a column is a sequence
of values from a single attribute, it is usually more compressible than a row.

Operating directly on compressed data introduces a number of complexities to the query executor. In a

naive approach, operating on compressed data would require every operator to have code to deal with each

compression scheme’s data structures. This increases implementation complexity and reduces extensibility, as
the addition of a new compression scheme would require altering each operator’s code. A second complexity
introduced by compression is disk access. A particular compression scheme may alter the physical order in
which records in a column are laid out on disk. This implies that reading a column in its original order will
require random I/0O. On the flip side, some compression schemes provide properties that can be exploited to
improve performance. These properties alter the functioning of access methods and indexes and allow for
new opportunities for optimizations within the executor.

Clearly, it is important to hide the details of compression schemes from the query executor. We achieve
this by providing one common interface to manipulate compressed data. However, we do not want to hide
all structure compression schemes have created on the data, as these may allow for new optimizations. A
mechanism is necessary to expose to operators relevant properties of the compressed data. We propose a
classification of compressed data, under which all compression schemes are classified by a set of properties.
The classification of compressed data is exposed to operators, and based on this classification, operators can
optimize their operations on compressed data.

In this thesis, we show how operating directly on compressed data can improve query performance.
Additionally, we show that the choice of compression scheme depends on the expected query workload,
suggesting that for ad-hoc queries we may wish to store a column redundantly under different coding schemes.
We also present the architecture of an executor that can operator directly on compressed data, without greatly
increasing operator complexity.

The next Chapter provides a high level overview of the architecture of the CStore query executor. Sub-
sequently, we describe the system from the bottom up, describing the compression schemes employed in
Chapter 3 and describing how data is stored on disk in Chapter 4. Chapter 5 describes the executor software
architecture. Results are presented in Chapter 6 followed by a discussion of related work in Chapter 7, and

future work in Chapter 8. Finally, we conclude in Chapter 9.

10

Chapter 2

Design Overview

In this chapter we present a high level introduction to the CStore query executor. CStore differs from a

traditional DBMS in two key respects:
1. CStore is a a column store database system. Traditional DBMSs are row stores.

2. CStore uses compression throughout the executor. Traditional DBMSs do not usually expose com-

pressed data to the executor.

These characteristics alter the architecture of the executor and the query plans for a particular query.
In this section, we introduce the design of the CStore executor including the interfaces to operators and
access methods. We introduce the design in two steps: firstly we describe how a column store architecture
alters the traditional query executor and subsequently we extend the column store query executor to support

compression.

2.1 Column Stores

A traditional database provides a set of access methods, as shown in Figure 2-1. Operators access data
through a variety of access methods, such as sequential and index scans, supported by B-trees, R-trees or a
variety of other indexing data structures. On execution, operators are instantiated in a query plan. Query
plans in traditional database systems are trees where the root operator produces the query results.

As an example, consider the lineitem table:
lineitem <orderID, suppkey, shipdate, etc...>

where we have a primary index on shipdate. Now suppose we want to know the number of orders per

supplier after the 1/1/05.

11

Operators
Project Select Join Aggregation Etc.
-NL -Count
-Index NL -Sum
-Hash -Average
-Ripple -etc.
-etc.
3
Value
]
Access Methods
Sequential Hash Index B-Tree Searchable
Scan Access Access Access Argument
Method Method Method Access
Method
A
Page
i
Disk

Figure 2-1: Architecture of a Row Store Query Executor

12

In SQL such a query could be expressed as:

SELECT count (orderID), suppKey

FROM lineitem

WHERE shipdate > 1/1/05

GROUP BY suppkey

After parsing and optimization, this query would likely correspond to the exection of the plan in Figure 2-
2. In this query plan there is a single access method used, a searchable arguement (”SARG”) access method
that presumely uses the index on shipdate to avoid reading pages that would not match the predicate.
Subsequently, we project out all columns not required for output, leaving just the orderID and suppkey as

inputs for aggregation.

Count
orderlD, Group By: suppkey

|
-

orderID, suppkey

searchable argument

lineitem (shipdate>1/1/05)

Figure 2-2: Query Plan for Traditional Row Store Executor

The row store query plan, shown in Figure 2-2 could not be used under the column store architecture.
Under a column store, we store a columns independently, thus requiring us to access each column indepen-
dently. We no longer have a single access method, but rather an access method per column. In a naive

implementation, we could implement the query above with a plan as shown in Figure 2-3.

Copnt
orderlD, Group By: suppkey

G.

(shipdate>1/1/05)

Glue

lineitem.suppkey lineitem.shipdate lineitem.orderlD

Figure 2-3: Naieve Query Plan for Column Store Executor

The glue operator essentially would perform the opposite of the project operator, gluing multiple columns

13

together so tuples have more than one attribute. In this query, the glue operator converts the the column
representation back to a row representation. However, it will execute slower than the row store plan as we
perform full sequential scans on each column. We are not able to push the shipdate > 1/1/05 selection
predicate below the glue as we do not know what the corresponding values for the orderID and suppkey
will be for a given shipdate.

To allow us to push predicates into the access methods, we introduce the notion of positions. Unlike in
a row store, where the access method simply returns an entire row, in CStore the column access methods
return the value of the column and the position at which that value occured. We also store position indexes
on each column to allow us to quickly lookup the value at a particular position. In this way, we are now
able to implement the a plan shown in Figure 2-4. We note that representing positions is a known technique
in the literature, and can be represented as a bitmap or a list of positions [13]. Position bitmaps or lists are
both compressible. A position list is an intermediate result in the executor that enumerates the positions in
the table that are part of the result. To retrieve the values for the positions, we can apply these position

lists as filters on the columns we wish to read. In the CStore executor this is known as position filtering.

Coynt
orderlD, Group By: suppkey

(value,position) Glue (value,position)

(value,position)

lineitem.suppkey lineitem.shipdate lineitem.orderlD
Position index Searc.hable Argument Position index
access method shipdate>1/1/05 access method

Figure 2-4: Better Query Plan for Column Store Executor

In Figure 2-4, we use indexes on position to filter the orderID and suppkey columns for the values, where

shipdate > 1/1/05.

2.1.1 Benefits of Column Store

Our column oriented architecture has allowed us to read only attributes that are used in a query, rather
than having to project out irrelevant attributes. But at what cost? In a row store we can read data in rows
sequentially off disk. However, in a column store we can read columns sequentially but reading different
attributes requires random I/0.

To get a feel for the relative performance of the system, let us analyze the relative performance of the

example query above. Let us assume the fields in the employee table are all fixed width with sizes:

lineitem <orderID[4], suppkeyl[4], shipdate[4], etc...[x]>

14

Assume the table contains a total of 200,000 entries, disk pages are 64Kb and the predicate shipdate
> 1/1/05 has a selectivity of 7.5%. We recall that there is a primary index on shipdate, meaning the table
is physically sorted in shipdate order and therefore each column is stored in shipdate order. This means
that the suppkey value for the sixth smallest shipdate will be the sixth value in the suppkey column. Let
us also assume random I/O is five times® slower than sequential reads. We denote the time for to read a
page from disk sequentially as C. Given this setup, we have to read 15,000 entries.

65536
1242

In the row store case, each tuple read from disk has a size of 12 + = bytes. There are tuples
per page. Therefore to reply to this query we need to read % ~ i:z: pages. The total time is:
5C 4+ 3C + [12C =8C + [1z]C

In the column store case we are reading three fields, each with a size of 4 bytes. However, we are required

to perform a seek when reading each page. For each column, we can hold @

= 16384 values per page.
Since we need to read 15000 values, and columns are stored in shipdate order, we need only to read the last

page in the three columns? The total cost is:
1(5)C 4+ 1(5)C + 1(5)C = 15C

The relative performance depends on the total size of each tuple. We note that if z > 28 the column
store will out perform the row store. In this analysis we have made two key assumptions that favor the row
store’s performance performance. Firstly, we assumed that reading any page from the column store would
require a disk seek. Secondly, we assumed that all I/O in the column store is sequential, thereby we only

incur a disk seek at the start of the query. However, in practice these assumptions do not holds as:

e Other queries run concurrently. Therefore, there is a chance that a given row store query is interupted.

This means that we cannot assume for the row store that all I/O is sequential.

e Modern disks have per track buffers. This is equivalent of reading more than one page at a time
and holding it in memory. Although, this is advantageous to both the row store and column store
architecture, the yield is higher in the case of the column store as all data read is used in the query
(rather than some being projected out). If different columns are on different tracks, the benefit is even

larger.

e Columns are more compressible, thereby giving us higher I/O bandwidth. With each page read, we

retrieve more values.

IThis is consist with our microbenchmarks, see Chapter 6
2May be two pages, in the case were the last page of values contains less than 15000 values

15

2.2 Compression

Through the example above, we have illustrated how column store systems have different query plans than
row store systems and how column stores can improve performance over row stores. Compression provides
a further performance advantage at the expense of added complexity in the executor. In a simple design,
the introduction of compression might have no influence on the executor. If we simply decompress data in
access methods and present data uncompressed to operators, then there is no alteration to the query plans

shown in Figure 2-4. Decompressing data has several disadvantages:
1. Decompressing data increases the CPU costs of the query.

2. Decompressed data requires more memory than compressed data, reducing the amount of memory

available for the buffer manager.

3. Decompression may reduce our ability to optimize operations. Compression schemes may introduce
certain kinds of structure to data, which can be exploited by some operators. This implies that, for

some operators, it is faster to operate on compressed data then uncompressed data.

The CStore query executor avoids decompressing data by delivering compressed data to operators. This
feature significantly alters the design of the query executor when compared to traditional column stores.
In a row oriented DBMS, an iterator interface delivers data to operators. Operators call getNextTuple (),
pulling a tuple up from the preceding operator in the query tree. In a traditional column store, we deal
with each attribute independently, thus the column oriented iterator interface transfers single values between
operators through getNextValue () call. The basic unit of data delivered by the traditional column oriented
iterator is a single value.

The per record iterator interface prohibits the delivery of compressed data to operators. Compression
algorithms operate by exploiting similarity present in a sequences of values. These algorithms build a data
structure that represents the same sequence in a smaller space. Extracting single values from these data
structures is equivalent to decompression.

The solution is to alter the basic unit of data delivered by the iterator. In the CStore query executor,
calls to the iterator deliver Blocks of data. A Block is an interface to an arbitrary set of values, which are
held compressed in memory. The iterator call is now getNextValueBlock().

We do not place any restrictions on what values a Block can hold. Consider a column as a sequence
of three values: A, B and C. Let us define the phrase original order, as the order in which values would
be stored on disk in a uncompressed column store. Now consider the following two original orders of those

values:

1. AAAAABBBBBCCCC

16

2. ABCABCBACABCBA

Now suppose, irrespective of the original order, the Block iterator delivers first a Block with all the
occurences of A, followed Block with all the occurences of B, and a third Block with all occurence of
C. If the column has the original order, then the Block iterator have delivered values to the executor in
the original order. However, if the column had the second original order, then the compression scheme
signficantly altered the order in which values are delivered. It may seem that the Block order does not
matter, since SQL operators are order independent. However, the entire table is expected by operators to
be stored in the same order. As we store columns independently, under different compression schemes this

may not be the case. There are two solutions to the above problem:
e Always deliver Blocks in the same order as the original sequence of values in the column.

e Do not impose any ordering requirement on Blocks. Operators must provide support for dealing with

out of order values.

Choosing the first option essentially a whole class of possible compression schemes?®. For example, under delta
coding on position, the original column is split into multiple sub-columns with lists of the positions where
each value occured. These position lists are then coded and individually stored on disk. The compressed
data structure is the compressed position list. To avoid decompression, each value’s position list must be
placed intact inside separte Blocks. Requiring that the stream of Blocks deliver the values of the column
in the original order would require us to decompress the position lists for each value to rebuild the order of
the column. Outlawing such compression schemes is suboptimal, as there is a large class of data where such
schemes provide us with high compression ratios. Instead, operators in the CStore query executor support
dealing with out of order Blocks. We discuss this further in Chapter 5.

Blocks provide a number of ways to access compressed data, and set of properties that describe the
structure of the compressed data contained by the Block. Operators uses these properties to decide the
optimal way to perform their function. For example, if a particular Block contains only one value (occurring
at multiple positions) then the selection operator need only look at a single value contained by the Block to
know whether or not the entire Block matches a selection predicate. Block properties are discussed more
in depth in Section 3.5.

Compression algorithms also change disk storage. Different compression have different access methods,
with diferent access costs. We introduce a compression specific layer that provides access methods for each
compression scheme, known as the Datasource layer. A Datasource exists for every compression scheme
present in the database, as can be seen in Figure 2-5. Within CStore, we access the disk using both

sequential and index scans. However, the data that is indexed is compression specific, therefore, these scans

3 Any scheme that codes on position

17

are performed by the Datasource layer. Datasources then provide Blocks to the CStore operators that

execute the query. Finally, the results are written by the BlockPrinter.

" }

Relect | Progest | Ao wpate | Sen o || Jow viaeate Pamey
-r‘ | Pammate Opeators
- 5

Operdon

Avernge hrs
s ~aot
(35

N

||
Byr Longs | Dafta Encading || Owts Encotng || Dihanay || Mw LZ0 Eavesing Usrempumed

Sk

Figure 2-5: CStore Query Executor Architecture

In many cases the structures introduced by compression can actually be used to provide faster lookups
than a traditional index. Datasources provide compression scheme specific implementations of predicates
(analagous to SARGable predicates) and capture the functionality of indexes through value and position
filtering methods. In both cases a filter is represented as stream of Blocks, ValueBlocks for value filtering
and PositionBlocks for postion filtering. The source of these these filters is another operator in the query
plan. This allows us to filter values on disk based on intemediate results in a query. Datasources look
at the values or positions in the filters and apply all possible optimizations to read those values/positions
efficiently. Filtering is further described in Chapter 5.

To return to the previous example query introduced in Section 2.1, we can now consider how compression

alters the execution of the query:

SELECT count(orderID), suppKey

18

FROM lineitem

WHERE shipdate > 1/1/05

GROUP BY suppkey

For the query above, we push a predicate into the shipdate Datasource as shown earlier in Figure
2-4. However, the the shipdate Datasource now produces PositionBlocks used to filter the orderID and

suppkey columns, as shown in Figure 2-6.

Copnt
orderID, Group By: suppkey
Datasource Datasource
Position Filtered PosBlock Copy Position Filtered
PostionBlocks
Datasource
Predicate: >1/1/05

lineitem.orderlD lineitem.shipdate lineitem.suppkey

Figure 2-6: Sample Query Plan for CStore Query Executor

This example illustrates several points about query plans in CStore. First, we note that the query plan is
not a tree, but a directed acyclic graph. We also note that Blocks may be used by more than one operator.
This is the case in Figure 2-6, where both the suppkey and orderid Datasources use PositionBlocks
from the shipdate Datasource to filter their output. Finally, we note that the two different types of
Block streams, ValueBlock and PositionBlock streams, are used depending on the input requirements of

operators.

2.3 Compression in a Column Store

In summary, the CStore executor is a column store executor that operates on compressed data. Being a
column oriented database forces us to use different access methods for each attribute in the query. To avoid
always having to perform a full sequential scan over the attributes used by a query, we must track the position
of each value throughout executor so to use position indexes over the data. Compression alters the layout
of data on disk, thus compression specific access methods, named Datasources, are introduced to provide
a standard interface for indexing. Compression also alters the way in which data is delivered to operators.
The basic unit of data within the CStore executor, the Block, is a set of compressed values. There are no
requirements on what values a Block can contain. Blocks also provide a set of properties that expose to

operators the structure of the compressed data in order to allow operators to optimize their operations. The

19

query executor is designed to be extensible, such that any compression schemes can be supported simply by
writing Datasource and Block code specific for that compression scheme.
We note that the discussion up to this point has not discussed any of the specific coding schemes used

by CStore. In the next Chapter we describe the schemes currently employed by CStore.

20

Chapter 3

Compression Schemes

A wide variety of coding schemes exist for many purposes. In this section, we introduce the set of schemes

that have been implemented in CStore. In general, they can be divided into three categories:

1. Storage optimizations: Compression on a single value.
2. Lightweight schemes: Compression on a sequence of values.

3. Heavyweight schemes: Compression on an array of bytes.

Storage Optimizations are schemes that do not code data and are smart about how they store values on
disk. Lightweight schemes code the data by noting some relationship between successive values. Schemes
such as run length encoding (RLE) and delta encoding are examples of light weight schemes. Heavy weight
schemes code based on patterns found in the data, ignoring the boundaries between values, and treating
the data input as an array of bytes. In the subsequent sections, the particular schemes under each of these

categories are detailed.

3.1 Storage Optimizations

Null suppression is the only scheme currently implemented in CStore that falls under this category. Null
suppression works by suppressing leading zeros in the data. For example, when storing an integer with the
value 123, we need not store 4 bytes on disk, 1 byte will suffice. However, there is a caveat: each value on
disk is no longer of fixed length. A coded column is a sequence of variable length fields. There are many
proposed solutions to this problem[15, 19]. We solve this by coding a table that indicates the length of
each field, much in the same way as stated in [15]. We write a byte sized table to code the length of the

subsequent four values, for every four values. The byte is divided into sets of two bits, with the first two

21

| num Values[32] || sizeTable;[8] | valy | valy | vals | valy | sizeTables|[8] | vals |

Figure 3-1: Null Suppression (size in bits)

bits encoding the length of the first value, the second two bits encoding the length of the second value, and
so on as shown in Figure 3-1. The header in a null suppression coded sequence contains just an integer to
represent the total number of values in the sequence.

Null suppression is most used when we have a random sequence of small integers. Null suppression
introduces a byte of overhead for every 4 values written, therefore the total number of bytes used coding a

sequence with N values, where the i*" value can be coded in n; bytes is:

al N
Total Size = Y _n; + [(3.1)

i=1
From this analysis we conclude that we should use null suppression if the average value in a column

requires less than 3.5 *x 8 = 28 bits to code.

3.2 Light Weight schemes

Light weight compression algorithms work on the basis of some relationship between values, such as when a
particular values occurs often, or if we encounter long runs of repeated values. To exploit this we use three

main techniques: run length encoding, delta encoding and dictionary encoding.

3.2.1 Run Length Encoding

Run length encoding (RLE) is useful for data with large runs of repeated values, which typically occurs on

sorted columns with a few number of values. Consider the following sequence of values:
- {1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,... }

By counting the number of repetitions, we can code such a sequence as {value, numRepetitions} pairs. The

sequence above could be represented as:

B {{1a3}7{2a2}7{3a10}}

The data structure {value, numRepetitions} is known as a RLEDouble. The header for this encoding,
shown in Figure 3-2, indicates the number of RLEDoubles in the sequence, the starting position of the first
RLEDouble within the sequence, and size in bits of the value and numRepititions fields.

In the context of a column-store database, it may be useful to code some redundant data. Consider

2th

we finding the value at the 1 position in this sequence. To find this position, we must start at the first

22

position and sequentially add numRepetitions of the RLEDoubles until we find the first RLEDouble where
this running sum is greater that or equal to 12, and then read the value from the RLEDouble. Finding a
position on this data structure requires an O(n) operation, where n is the number of RLEDoubles. By storing
the starting position in each RLEDouble we can improve performance. The sequence above would now be

coded as:

{{1,1,3},{2,4,2},{3,6,10} }

The data structure {value, startPosition, numRepetitions} is known as an RLETriple. RLETriples
allow us to binary search to locate a particular position. This improves the search bounds to O(log,(n)).

When encoding RLE we must decide on the size in bits of each field within the RLETriple This information
is maintained in a header that precedes all RLE encoded data, shown in Figure 3-2. Under CStore both RLE
schemes are employed. We denote the scheme using RLETriples as RLE and the scheme storing RLEDoubles

as RLEIIL. RLE is the compression algorithm of choice for sequences with large runs of repeated values.

RLE | sizeValue[8] | sizeStartPos[8] | sizeReps[8] | sizePage[32] || RLETriple;y | ...

RLEII | sizePage[32] | sizeValue[8] | sizeReps[8] | startPos[32] || RLEDouble; | ...

Figure 3-2: RLE and its variants

3.2.2 Delta Coding

Delta encoding involves storing the difference two adjacent values. Delta coding is useful when we have a
sequence of values where the difference between successive values can be coded in less bits than the values

themselves. Consider the sequence of values:
- {1200, 1400, 1700, 8000}
The differences between the values are:
- {200, 300, 6300}

To rebuild the sequence, however, we need to know the initial value. Therefore, we code the sequence as

the initial value followed by the set of differences between adjacent values:
- {1200,{200,300,6300}}.

In delta encoding the difference list is known as the delta list. On disk, the delta encoded data structure

is laid out as shown in Figure 3-3.

23

| value[32] | startPos[32] | numDeltas[32] || DeltaList ...

Figure 3-3: Delta Coding

There is a limit for the largest delta as we have chosen fixed sized field. In a sequence, there could be
a small number of large deltas, so we want to be able to accomodate these jumps. If a particular delta is
larger than (delta > 2572¢0fPelta _ 1) the value 2572¢0fPeltalnBits _ 1 g written and the delta is encoded in
the next 32 bits. In this way we can accomodate occasional large deltas.

Two flavors of delta encoding are used with in CStore, delta encoding on value and delta encoding on

position. The coding scheme is unaltered, the difference is just which sequence of values we are coding.

Delta Encoding on Value

Delta encoding on value is the most natural of the two variants. The sequence coded is the sequence of

values in the column. If a column contains the sequence:
{1200, 1400, 1700, 8000}
starting at position 1000, we would code the sequence to;
{1200,1000, 9, 3,{200,300,6300} }.

We note that in this example, deltas 200 and 300 fit in a delta field 9 bits wide. The 6300 however would
not, and would require 9+32 bits to encode. Delta coding on value is useful if we have a column with many
values, where the difference between values can be coded in less bits than the values themselves. This is

typically the case in sorted columns.

Delta Encoding on Position

Under Delta encodind on position, we code the list of postions where each value in the column occurs. Delta
encoding on position is effective when the list of positions for each value is large, or equivalently when values

are repeated multiple times in a column. Consider the sequence:
{1,2,3,4,5,1,2,3,4,5,5,4,3,2,1,1,2,34,5}
Now lets consider the positions where each value occurs:

- The value 1 occurs at positions {1, 6, 15, 16}
- The value 2 occurs at positions {2, 7, 14, 17}
- The value 3 occurs at positions {3, 8, 13, 18}

- The value 4 occurs at positions {4, 9, 12, 19}

24

- The value 5 occurs at positions {5, 10, 11, 20}

Delta encoding on position, codes each of these position lists using the delta encoding scheme described

earlier. Therefore, for the previous example we create 5 different delta encoding data structure :

- {startValue=1, startPosition=1, sizeOfDeltalnBits=4, numElementsInDeltal.ist=3,{5,9,1}}
- {startValue=2, startPosition=2, sizeOfDeltalnBits=4, numElementsInDeltalist=3,{5,8,3}}
- {startValue=3, startPosition=3, sizeOfDeltalnBits=4, numElementsInDeltal.ist=3,{5,7,5} }
- {startValue=4, startPosition=4, sizeOfDeltalnBits=4, numElementsInDeltalist=3,{5,6,7}}

- {startValue=5, startPosition=5, sizeOfDeltalnBits=4, numElementsInDeltal.ist=3,{5,5,9} }

Each of these data structures is stored separately on disk, under different names. In addition, an un-
compressed list is stored with the values that exist in the original sequence. This list takes the form
{numberOfValues, {list}}. The format of each value sub-column and the value table is shown in Figure

3-4.

DeltaPos value[32] | startPos[32] | numDeltas[32] || DeltaList ...
DeltaPosValueTable | numValues[32] || valuei[32] | valuey[32] | ...

Figure 3-4: DeltaPos Data Structures.

Delta encoding on position is effective when we have a sequence with a small number of values occuring

in random positions in the sequence.

3.2.3 Simple Dictionary Coding

A wide set of dictionary compression schemes in literature[4, 15, 2]. CStore employs two dictionary schemes,
the first a simple dictionary scheme detailed in this section and the second a Lempel-Ziv based scheme
described in the next section. Simple dictionary encoding is one of the most widely used compression
schemes in traditional DBMSs[4, 15, 2]. The crux of dictionary encoding is to replace large bit patterns with
smaller tokens. In the simple scheme employed by CStore we replace large values in a sequence with fixed
sized tokens. The algorithm for dictionary coding in CStore is shown in Figure 3-5. The algorithm takes
one pass a coding the column. For each value, it checks looks up the value in a hash map to retrieve its
corresponding token. If the value is not in the hash map, it increments a token counter, and adds the value
and the token to the hash map. For each value read, it writed the value’s corresponding token.

To decode, however, we need to know the mapping between tokens and values. After compression, we
write the uncompressed keys in the valueTokenMap sequentially storing them as a column. This is known
as the table column, and is show in Figure 3-6. The position of values within the table column provide the

mapping to the decompressed value. The first value in the table column corresponds to the 0 token, the

25

. fieldSize=Pick(fieldSize > loga(E[numberO fValuesInSequence]))
. count=0

. hashmap valueTokenMap

buffer=new char [PAGESIZE]

count=0

D O W N

. while (sequence not empty)

(a) currentValue=getNextValueFromSequence ()

(b) if (valueTokenMap.containsKey(currentValue))
i. write(buffer, valueTokenMap[value])

(c) else

i. valueTokenMap.put(value, count)
ii. write(buffer, count)
iii. count++

7. return buffer

Figure 3-5: Simple Dictionary Encoding Scheme

Dictionary numValues[32] | sizeToken[8] || token[sizeToken] | tokens[sizeToken] | ...
DictionaryTable numValues[32] | valuetoken=0[32] | valuetoken=1[32] | valuetoken=1[32] |

Figure 3-6: Dictionary Coding Data Structures.

second value corresponds to the 1 token and so on. To decompress, we read the values column and build a
token to value hash map. Given this hash map, decoding is simple. To decode, we lookup each token in the
hash map to obtain its original value.

This algorithm has a useful property: if the original sequence was value sorted, the compressed sequence

is too. This allows us to perform range queries on the compressed sequence.

3.3 Heavy Weight Schemes

3.3.1 LZO

LZO (Lempel Ziv Oberhummer[11}) is a modification of the orginal Lempel Ziv (“LZ77”) dictionary coding
algorithm[12]. LZ77 works by replacing byte patterns with tokens. Each time the algorithm recognizes a
new pattern, it outputs the pattern and then it adds it to a dictionary. The next time it encounters that
pattern, it outputs this token from the table. The first 256 tokens are assigned to possible values of a single
byte. Subsequent tokens are assigned to larger patterns.

Details on the particular algorithm modifications added by LZO are undocumented, although LZO is
a GPL compression library, the code is highly optimized and hard to decipher. LZO is heavily optimized
for decompression speed, with the author claiming an average data transfer rate of a third of the memcpy

function. It provides the following features:

26

e Decompression is simple and very fast.
e Requires no memory for decompression.

e Compression is fast.

The algorithm is thread safe.

e The algorithm is lossless.

LZO’s ability to provide fast decompression makes it a candidate for CStore. The CStore executor does
not, however, operate directly on LZO data, instead LZO compressed data is decompressed before it is

presented to executor.

3.4 Picking a compression scheme

We have described six compression schemes currently implemented in CStore. The compression ratios that
each scheme is able to acheive depends greatly on the properties of the sequence of values we are encoding.

Figure 3-7 provides a rough guide of the effectiveness of different compression schemes on different types of

data.
| Properties on Values | Few Values | Many Values |
Runs of repeated values RLE RLE (runs must exist)
Sorted RLE (runs must exist) DeltaOnValue, LZO, Int
Unsorted Dictionary, DeltaOnPosition LZO/Int
Large Values Dictionary LZO, Int
Small Values Dictionary, Null Suppression Null Suppression

Figure 3-7: What Compression Scheme to Pick

We have described a rough selection criteria for compression schemes. However, it is important to note
that the choice of compression scheme also depends on the queries that use this data. The performance of
a given operator is largely dependent on the structure of the coded data it is operating on. Therefore, to
maximize performance we may wish to use a less compact scheme to improve a query’s performance. For a
varied query load, we may have a particular column stored redundantly under many compression schemes

so to increase overall query performance.

3.5 Properties of Column Compression

Compression schemes may alter the ordering of a sequence of values. We introduce a set of properties
that allow us to describe the structure of compressed data relative to the original sequence. To begin this

discussion, there are two general classes of questions we can ask about a sequence of values:

27

1. What is the fourth value in the sequence?

2. Where does the value 3 occur?

The first question has a single answer, for every position there is only one value. The second question may
not have a unique answer since the value 3 can occur at multiple positions. Therefore, to describe a single
instance of a value we have to specify both the value and position. We denote the set {value, position}
as a Pair.

When we consider the compression schemes described in this chapter, not all schemes preserve the original
order of the sequence on disk. For example. if we consider delta encoding on position, we code a delta list
for each value, and store each of these list contiguously on disk. If a particular value did not occur in runs,
but was interspersed in other values then original order of the column is not preserved on disk.

It may seem that storage order does not matter, since SQL operators are order independent. However,
the entire table is expected by operators to be stored in the same order. With different compression schemes
for different columns, and the delivery of data as it its physical order, operators no longer receive two columns
in the same order. We build support in the query executor for out order values and deliver every values
to the executor as a stream of pairs. The entire stream of Pairs represents the original data. Pairs are
delivered in the query executor in Blocks, where a Block contains an arbitrary number of Pairs. Abstractly,
we can think of Blocks as non-overlapping subsets of the total set of Pairs in a column. Let’s formalize our

discussion of columns by introducing some notation. Let:

e P[i] be the i*" Pair in a stream of Pairs.

C:U?; P[i] be the set of all Pairs in a column.

Value(P[i]) =value part of i*" pair

e Position(P[i]) =position part of i*" pair

S; are subsets of C, C=J;~, 5; = C where
— Sa:Ui:jP[z] where j <k & 1<jk<N

- SaNS=0iff a£b&1<ab<m

We can now consider some properties over the Pair stream, and Blocks of the Pairs in that stream. In

particular:

1. Are the values sorted? (i.e. Is Value(P[i]) < Value(P[j]) Vi < j ?)

2. Are the positions sorted? (i.e. Is Position(Pli]) < Position(P[j]) Vi < j ?)

28

3. Does this Block only hold one value? (i.e. Is Value(PJi]) = Value(P[j]) = k Vi, j : P[i]&P[j] € S; ?7)

4. Does this Block hold contiguous positions? (i.e. Is Position(P[i]) + 1 = Position(P[i + 1]) Vi :
Plil&Pli+1] € 5; ?)

5. Is this Block value sorted? (i.e. Is Value(P[i]) < Value(P[j]) Vi < j:i&j € S; ?)
6. Is this Block position sorted? (i.e. Is Position(Pli]) < Position(P[j]) Vi < j :i&j € S; 7)

With 6 properties, there is a set of 26 = 64 possible combinations of properties that any Block could

have. However, we can limit this number by noting the following relations between these properties:
- 1 — 5: If the stream is value sorted, then each subset must be value sorted

- 2 — 4: If the stream is position sorted then all positions in stream are adjacent to each other, therefore

each subset is position contiguous.

2 — 6: If the stream is position sorted, then each subset must also be position sorted.

3 — 5: If the subset holds only one value, then the subset is trivially value sorted
- 4 — 6: If subset is position contiguous, it must be position sorted

This gives us a total of 18 possible combinations. This result is important due to its generality. If we
consider any coding scheme we can always classify it according to one of these 18 general classes formed by
these properties.

This result has a large impact on the complexity of the query executor. It implies that if we abstract
away compression schemes but provide operators with a stream of Blocks, then their are at most 18 cases
they have to deal with. In practice, operators deal with fewer than 18 cases for two main reasons. Firstly,
only a few of these properties can be used fruitfully for optimization. For example, code that deals with a
multi-valued Block is able to deal with single value subsets, as a single value subset is a special case of the
more general multi-value subset. Secondly, for some operators, many of these properties are irrelevant. A
select operator is only concerned with the values in a Block suggesting that postion oriented properties (i.e.
2,4 and 6) are irrelevant.

We must operate on Blocks instead of the entire column for several reasons: for one, we can only deal
with subsets of the column at any point in time, as in general the entire column will not fit in memory.
Additionally, most compression schemes create data structures that represent a subset of the data. For
example, an RLETriple represents a run of a particular value in the original column. The compressed data
structures themselves represent subsets of the entire column, and are therefore well suited to the Block

model. Lastly, data on disk is stored in pages, and for reasons described in chapter 4, we code subsets of a

29

column until we have a page worth of data. When we decompress a page we have a subset of the column
to operate on. In the next chapter, we look at how compressed sequences are actually stored on disk within

the CStore system.

30

Chapter 4

Storage model for CStore

For the current CStore system, we use Sleepycat’s BerkeleyDB for storage management. BerkeleyDB
(“BDB”) “is an open source embedded database library that provides scalable, high-performance, transaction-
protected data management services to applications.”[17] CStore currently uses BDB as a storage manager.
We store 64K pages as BLOBs (Binary large objects) within BDB. Pages contained coded data, created by
running a coding scheme until we have a page worth of data to write. Each page contains sufficient header
information to decompress all its contents.

Within BerkeleyDB we store different types of B-Tree indexes on compressed pages depending on the

properties of the compressed data.

1. If pages are sorted by value, we store two indexes: a primary index on value and a secondary index on

position.
2. If pages are not sorted by value, we store a single index: a primary index on position.

It is important to note that indices are on pages, but pages have multiple values and positions. We pick
the last value and position in each page as the key for the index. To lookup a particular value, we perform
a lookup on the primary index. We find the first leaf in the index where the key is greater than or equal to
the value we are searching for. The page pointed to by this index entry is guaranteed to be the only page
where that value could be located *.

Some of the schemes described in Chapter 3 require storing more than one column on disk. In particular:

Delta Coding on Position codes a delta list for each value. We store these as separate objects in BDB,

each delta list with a primary index on position. A second type of column is also stored that provides a

1We can proof this by contradiction: if the value we are searching is in fact contained in another page, then the index entry
for that page must be greater than or equal to that value. However, we traverse the index in order, so there can only be one
page where the value is contained.

31

list of all the values for which delta lists exist. This value column is sorted with both value and position
indexes. The value column operates as a catalog for the delta lists available, in that it allows us to
discover what delta lists are available. To maintain this system within BDB, a strict naming convention
is followed. The value column is named <column name>VALS and each value sub-column is named
<column name><value>. This layout of data allows us to read down each delta list independently

and have an independent position index for each value.

Dictionary Encoding requires storing a value table to allow us to map tokens back to the original value.
The table is an uncompressed column named <column name>Table. The table column and coded
columns are both sorted if the original data was sorted. The table and coded column therefore have
both value and position indexes if the original data was sorted. If the original data was unsorted, both

the table and compressed columns are stored with only position indexes.

Data stored and indexed by BerkeleyDB is compression specific. Within the CStore architecture, Datasources
are responsible for opening the correct BerkeleyDB objects to provide the executor with Blocks to operate.
In the next chapter, we begin a more detailed discussion of how Datasources, Blocks and other components

operate within the executor.

32

Chapter 5

Software Architecture

Thus far, we have described at a high level the overall architecture of the CStore query executor. In this
chapter, we study the details as to the implementation of the CStore executor. To start the discussion, let
us consider the sample query introduced in Chapter 2. In this query, we want to find the number of orders
on each day since the beginning of the year. We can express such a query in SQL:

SELECT count (orderID), shipdate

FROM lineitem

WHERE shipdate > 1/1/05

GROUP BY shipdate

Figure 2-2 illustrates a query plan that might be instantiated within a traditional DBMS and Figure 2-6
illustrates the query plan instantiated within the CStore executor.

We recall that in a traditional DBMS the query plan involves a single access method, a projection and

finally a COUNT aggregation operator. The CStore query plan differs as:
1. There is an access method for every column.
2. Unlike the traditional plan, the CStore query plan is not trees.

3. Datasources are used to filter positions. The Datasources aggressively tries to limit the number of
disk accesses required, by taking advantage of its knowledge of the structure of the compressed column

on disk and the properties of the filter Blocks.

In the next sections, we describe in more detail how we can handle the cases introduced by each of these
points. We begin our discussion by describing Blocks, which are the central component exchanged between

all components in the design.

33

5.1 Blocks

Recall that a Block carries compressed data and provides a common interface to access compressed data.
A Block contains a subset of the compressed column and exposes to operators the set of six properties
indicated in section 3.5. These properties indicate to operators the structure of the Block as well as the

Block stream in which it is contained. The interface to a Block is shown in Figure 5-1.

Block* clone(Block&) Copy the block.

bool hasNext () Does the iterator contain any remaining Pairs.
bool hasNext(int value.) Does the iterator contain any Pairs with this value.
Pair* getNext () Get the next Pair in the iterator.

Pair* peekNext() Get the next Pair in iterator without advancing it.
Pair* getPairAtLoc(uint loc_) Get the Pair at this location.

int getCurrLoc() Return the current location of the iterator.

int getSize() Return the number of Pairs in this Block.

int getSizeInBits() Return the size of the Block in bits.

Pair* getStartPair() Get the first Pair in the Block.

void resetBlock() Reset the iterator to point to the first Pair.

bool isValueSorted() Returns true if the Block stream is value sorted.
bool isPosSorted() Returns true if the Block stream is position sorted.
bool isOneValue() Returns true if the Block has a single value.

bool isPosContiguous () Returns true if the Block is position contiguous.
bool isBlockValueSorted() Returns true if the Block is value sorted.

bool isBlockPosSorted() Returns true if the Block stream is position sorted.

Figure 5-1: ValueBlock interface

Blocks provide the ability to decompress on the fly, providing an iterator style interface to the Pairs
it contains. Our goal, however, is for most operators to use knowledge of a Block’s structure to avoid
decompression. We can illustrate this most clearly through an example: consider a Block stream that is
value and position sorted, where each Block in the stream contains one value and is position contiguous.
Suppose we have a second Block stream which is also value and position sorted, and where Blocks are not
single-valued. Now consider a selection filtering based on whether the value is greater than some constant k.

With a single-valued Block, all the select operator needs to do is look at the first value and if the value
satisfies the predicate it can return that entire Block. If the value does not satisfy the predicate, it simply
goes on to process the next Block. With multi-valued Blocks, the select would have to test the predicate
on each value, effectively requiring the Block to decompress each value. It may be that the single value
property is irrelevant to some operators. For example, a count aggregation operator aggregating on a Block
stream never needs to access to values, hence whether the Blocks are one-valued or not is irrelevant.

Blocks provide access to uncompressed data through an iterator interface, as shown in Figure 5-1 for
ValueBlocks. ValueBlocks provide a getNextPair () call, while PositionBlocks provide a getNextPosition()

call. The iterator provides access to a stream of Pairs or Positions depending on the type of Block. In

34

addition, random access is provided by a call to getPairAtLoc(int i) which allows us to jump to i* Pair
or Position in the stream.

A particular Block may not be unique in a Block stream between operators. For example, there could
be multiple instances of a set of values and positions after a join operator. We capture this information in

a numOccurences field within each Block, to avoid copying Blocks.

5.1.1 Value Blocks

ValueBlocks represent the column value data, as opposed to PositionBlocks that just contain the set of
positions in the column. In the terminology from chapter 3.5, Blocks hold a subset of a coded sequence.
A Block holds the smallest possible compressed data structure. These data structures are by their nature
coding scheme specific, thus an RLEBlock is different from a DeltaOnPositionBlock (“DeltaPosBlock” for

brevity). In the next subsections, we look at the current types of ValueBlocks and their properties.

5.1.2 BasicBlocks

BasicBlocks, as their name implies, are the simplest type of Blocks in the CStore query executor. They
contain a single pair, have a size of 1 and take 8 bytes in memory'. BasicBlocks are used for uncompressed
data or data that is decompressed before it is exposed to the executor. BasicBlocks have properties as

shown in Figure 5-2.

| Property | Value |

Block Stream value sorted True if original column is value sorted
Block Stream position sorted: | True (as original column is always in position sorted sequence)
Block one valued: True

Block position contiguous: True (trivially)
Block value sorted: True (trivially)
Block position sorted: True (trivially)
Block size: 1
Block size in bytes: 8

Figure 5-2: BasicBlock Properties

5.1.3 RLEBIlocks

RLEBlocks contain a single RLETriple. RLEBIlocks are decompressed through calls to getNext (). The first
call to getNext () returns the Pair {value,startPos}, the second call returns {value, startPos+1}, the
ith call returns {value, startPos+i-1} all the way up to {value,startPos+reps}. Random access in

RLEBlocks is fast, as it only requires us to check if the position requested is contained in the RLEBlock,

Lthe size of a Pair: 4 bytes for the value, 4 bytes for position

35

which requires at most two comparisons. We note that it is computationally simple to decode RLEBlocks,

however the overhead of the function calls adds up. The properties of RLEBlocks, are shown in Figure 5-3.

| Property | Value |
Block Stream value sorted True if original column is value sorted
Block Stream position sorted: | True
Block one valued: True
Block position contiguous: True
Block value sorted: True
Block position sorted: True
Block size: Arbitrary, numRepetitions in RLETriple
Block size in bytes: 12

Figure 5-3: RLEBlock Properties

5.1.4 DeltaPosBlocks

DeltaPosBlocks differ greatly from BasicBlocks and RLEBlocks. We stated earlier that a Block contains
the smallest possible compressed data structure. In the case of delta encoding on position, the smallest
compressed data structure is a disk page of delta on position data?. As a reminder, a page of DeltaPos data
contains a header with the number of deltas found on the page, the initial position and the value this page

encodes followed by a delta list that fills the page. DeltaPosBlocks’ properties are shown in Figure 5-4.

| Property | Value |
Block Stream value sorted True, regardless of whether initial data was sorted.
Block Stream position sorted: | False
Block one valued: True
Block position contiguous: False
Block value sorted: True
Block position sorted: True
Block size: Arbitrary, numDeltasInDeltaList + 1 (for the startPos).
Block size in bytes: One Page

Figure 5-4: DeltaPosBlock Properties

DeltaPosBlocks are decoded on the fly by walking down the delta list. The ‘" pair returned by
getNext () is {value, position[i]}where position[i] =position[i-1] +delta[i-1] and position[1]
= startPos. Random access in DeltaPosBlocks is slow as we have to walk down the delta list adding and
subtracting depending on the direction of traversal.

DeltaPosBlocks have the appealing feature that they order the original column. This allows a number

of optimizations to be performed on delta on position coded columns as operations can assume the output

2As we mentioned previously, coding is always done at a disk page granularity.

36

sequence is sorted. However, the cost for this feature is that DeltaPosBlocks are no longer position con-
tiguous. An operator in a query is not guaranteed where in the stream of DeltaPosBlocks a particular
position of interest will appear. A second implication is that operators also do not know which positions
were filtered out by previous operators. The trade offs introduced by DeltaPosBlocks must be considered

by the optimizer.

5.1.5 DeltaValBlocks

DeltaOnValueBlocks (“DeltaValBlocks”) are similar to DeltaOnPosition Blocks in that a full disk page is

maintained inside the Block. DeltaValBlocks’ properties are shown in Figure 5-5.

| Property | Value |
Block Stream value sorted True, if original column is value sorted.
Block Stream position sorted: | True
Block one valued: False
Block position contiguous: True
Block value sorted: True, if original column is value sorted.
Block position sorted: True
Block size: Arbitrary, numDeltasInDeltalist + 1 (for the startValue).
Block size in bytes: One Page

Figure 5-5: DeltaValBlock Properties

DeltaValBlocks are decoded in a similar way to DeltaPosBlocks. The i*" call to getNext() returns
{value[i], startPos+i-1} where value[il=value[i-1]+deltali-1] and value[1]=startValue defined
in the delta on value page header. Random access in DeltaValBlocks is slow, as we have to walk down the

delta list much like the case in the DeltaPosBlock.

5.1.6 Position Blocks

A position Block is a vector of positions. Intuitively, it is half of a ValueBlock, in that if a ValueBlock
is stripped of its values it is transformed into a PositionBlock. If this is the case, then why have position
Blocks? We are essentially destroying information, and recovering values will require disk I/0. Why not

just pass ValueBlocks around? There are two major reasons for the existence of PositionBlocks:

Compressibility: By removing values, we end up with a sequence of positions. These sequences typically
have long runs. Consider the case of a RLE encoded sorted column. If we were to apply a selection
on this column, with a low selectivity predicate of the form value>constant, we expect many values
to satisfy this predicate. However, as the column is sorted, we expect only one range of positions to

satisfy that query. If we RLE encode the positions we have only one RLETriple representing the range

37

of positions that satisfied the predicate, rather than one RLETriple for each value that satisfied the

predicate. This analysis extends to other compression schemes.

Operators: For some operators, it is more natural to think in terms of position vectors, or to produce
position vectors as their output. Logical operators, like BAnd and BOr take a pair of position vectors

and perform some logical operation to produce another position vector.

In terms of implementation, there is little difference between a PositionBlock and a ValueBlock.

PositionBlocks, however, expose fewer properties. A PositionBlock has three properties:

1. Is the position stream in sorted order?
2. Are positions in the PositionBlock contiguous?

3. Are positions in the PositionBlock in sorted order?

These properties are related in the same way as in the case for value blocks. The following relations exist:
- 1 — 2: If the stream is sorted, then each PositionBlock must contain contiguous positions.

- 1 — 3: If the stream is sorted, then each PositionBlock must be sorted.

- 2 — 3: If the PositionBlock is position contiguous, then the PositionBlock must be sorted.

These gives us a total of four possible classes of PositionBlocks.

1. The position stream is in sorted order.

2. The position stream is not in sorted order, but the PositionBlock are contiguous.

3. The positions in PositionBlocks are in sorted order.

4. None of the properties is true.

CStore currently implements PositionBlocks for each of these types:

PosBasicBlocks: Like their ValueBlock counterparts, these blocks contain a single position. They are used

in the case that all properties are false.

PosBitBlocks: Essentially, a multi-position PosBasicBlock. PosBitBlocksstart at a given position, startPos,
and code a bitstring, where the i* bit represents the position startPos+i. If the bit is high at this
position, then that position is returned in the calls to getNextPosition(). Whether PosBitBlocks

or PosBasicBlocks are used depends on an optimizer decision.

38

PosDeltaBlock: In PosDeltaBlocks, only individual PositionBlocks are position sorted. PosDeltaBlocks

delta encode the positions, thus amounting to a DeltaPosBlock.

PosRLEBlock: Essentially like an RLEBlock, PosRLEBlock are used when there are long runs of positions.

PosRLEBlocks return true to all three properties.

In summary, PositionBlocks are very similar to their ValueBlock counterparts. They are employed
mainly to strip ValueBlocks of values information to provide for greater compressibility and allow us to

leverage memory further.

5.2 Operators

Operators have a pull based iterator API. An operator pulls in data from its child and provides data to its
parents. Operators are constructed with a pointer to their child. They can request two types of Blocks
from the child:ValueBlocks and PositionBlocks. Symmetrically, operators provide the same interface to
their parents. Note, however, that some operators may only provide one type of output. For example,
a logical operators, such as BAnd, can only produce PositionBlocks. Select operators can provide both
output types. Select can return ValueBlocks that satisfied the predicate, or alternatively, it can return
PositionBlocks indicating all the positions that satisfied the predicate.

We mentioned earlier that properties on Blocks allow operators to optimize their operations. One way to
view Block properties is that they provide operators certain guarantees. Given these guarantees, operators
know what they can do without breaking correctness. Consider the one-valued property of Blocks. If an
operator knows the Block contains only one value, it need only look at the first pair to perform any sort of
value operation. A Select operator can just look at the first pair and decide whether or not to return the
entire Block. An aggregation operator that is grouping on a one-valued, position-contiguous Blocks need
only read the first Pair to find the value and the size of the Block to determine what positions it needs to
aggregate into that value’s bucket.

In the next few subsections, we look at how some of the more complex operators use properties to perform

their functions.

5.2.1 Aggregation

The aggregation in current CStore system was developed by Edmond Lau. There are two main parts to
aggregation. Firstly, there is a aggregation function, that is performed over a sequence of values. SQL
supports functions like SUM, AVERAGE, COUNT and MAX. The second aspect to aggregation is defining the set

of data on which to apply the aggregation function. This is done through the SQL GROUP BY construct.

39

The aggregation operators have two inputs. The first input is a ValueBlock stream on which the
aggregation function will be applied. The second is a ValueBlock stream that defines the group to which
each position belongs. The description thus far is identical to that of a traditional row store. In CStore, we
consider the aggregation to be a row operation, and enforce that the two input columns must be lined up.
This means that if we denote A, B as the two input ValueBlock streams, where P4li], Pg[i] represent the
it" Pair in the ValueBlock streams, the Position(P4[i]) = Position(Pgli]). Relaxing this requirement is a
question for future work.

Aggregation operators are able to optimize if both its input is a one-valued Blocks. If this is the case, the
COUNT aggregation function simply adds the size of the Blocks, and SUM aggregation function adds the value
times the size of the Block. Similarly, on one-valued Blocks, MIN and MAX can just compare the running
minimum or maximum with the value of that Block rather than having to iterate through every occurrence

of that value.

5.2.2 Nested Loop Join

The nested loop join operator, NLJoin, was developed by Daniel Abadi. The NLJoin operator takes in two
ValueBlock streams and outputs two PositionBlock streams, one for each table.

The NLJoin operator reads contains two Blocks at any point in time, an outer Block for the outer loop
and an inner Block for the inner loop. For simplicity, let us assume the blocks are one-valued® and that the
outer block contains only one position. The NLJoin operator now compares the two values to see if they
match the join predicate. If they do, the join outputs two PositionBlocks: a PositionBlock with the
positions of the outer Block and PositionBlock with the positions of the inner Block. The NLJoin now
reads a new inner Block and repeats the procedure until the inner Block stream is exhausted. At this point
it reads the next outer Block and resets the inner Block stream to the first Block, and begins iterating
through the inner Blocks again. The NLJoin is complete when the outer Block stream no longer has any
more Blocks.

The performance of the NLJoin is dependent on the number of positions contained in each inner Block.
For this reason, NLJoin performs well one-valued inner Blocks, as the predicate need only be matched once
for a large number of positions. For multi-valued Blocks, additional optimizations are possible if the Block
is value sorted, as the NLJoin can optimize predicate matching on the Block.

In the previous discussion, we made the assumption that the outer Block contains only one position.
This could be achieved by decompressing the outer Block. However, decompression of the outer Block
may be unnecessary. For example, if the outer Block is one-valued and position contiguous, then we can

optimize the NLJoin by only requiring one pass over the inner Block stream for all positions of the outer

3We note that we can make any multi-valued Block into a set of one valued Blocks.

40

Block. A one-valued and position contiguous outer Block allows the NLJoin to simply output the inner
Block positions N times for each match of the join predicate, where N is the number of positions contained

in the outer Block.

5.3 Writing Blocks

Blocks can be converted between types or encoded using writers. There are two types of Writers, value and
position writers, value writers write ValueBlocks and position writers write PositionBlocks. There is a

writer for each type of value Block. Value Block types are listed below:
BasicBlockWriter Writes Basic Blocks. This amounts to decompressing values.
RLEWriter Writes RLEBlocks. Optimizes if possible by taking advantage of position contiguous Blocks..

DeltaPosWriter Writes DeltaOnPosition Blocks. The entire Block stream is progressively decompressed,

while DeltaPosBlocks are progressively returned as the writer fills a delta list for any given value.

DeltaValWriter Writes DeltaValBlocks Blocks. If the input Block stream is position sorted, then all

writing is done in memory, if not then writer may spill to disk.

We note that writing of Blocks is an expensive operation that may amount to recompressing the data as
we may be converting between two completely different types of encodings. A writer may have to consume
an entire Block stream before it can write its first output Block. The intermediate results for a particular

writer may not fit in memory.

5.4 Datasources

Datasources are responsible for reducing the amount of data read from disk, by using predicates and filters
and their knowledge of how data is laid out on disk. In this section we describe how the behavior of
Datasource’s features and subsequently discuss how these are implemented.

A Datasource allows three types of information to be passed to it:

Predicates: A Datasource can match Blocks on predicates, returning only Blocks whose Pairs match the

predicate.

Value filters: A Datasource will consume a stream of value Blocks and will only return Blocks whose

values are equal to some value in the stream.

Position filters: A Datasource will consume a stream of position Blocks and will only return Blocks

whose positions are equal to some position in the stream.

41

Two properties affect how efficiently Datasources can read pages with relevant data.
1. If the Block stream is value sorted: predicate and value filters can be applied efficiently.
2. If the Block stream is position sorted: position filters can be applied efficiently.

The implementation strategy for each of these features is described in the next few subsections.

5.4.1 Predicates

Predicates filtering can be implemented efficiently if the compressed column can be accessed in value sorted
order. Suppose, for example, we have a primary index on value. To implement the predicate > k, we lookup
k in a value index and walk down the index until the end of the column. If there is no way to access the
column in sorted order, we are forced to perform a sequential scan.

Indices allow us to pick the right pages, but how we handle values within those pages depends on the

particular compression scheme for the column. We note that for:

RLE: There are multiple Blocks within a page, therefore after the lookup on the first page we must find
the first Block that matches the predicate. We are guaranteed that all subsequent Blocks will satisfy
the predicate (as long as the column is value sorted) so these can be returned without evaluating the
predicate. If the initial column is unsorted, we must read each RLETriple from disk and test whether

or not it matches the predicate.

DeltaOnPosition: We do not have a traditional value index. However, we have a sorted list of all values in
that column. Within this list, we perform a similar lookup and subsequently return all sub-columns

that match the predicate.

DeltaOnValue: If the original column was sorted, we may have to re-encode a delta list to remove all values
that did not match the predicate. If the original column was not sorted, we are forced to decompress

to ensure the predicate is satisfied for each value.

An extension of the predicate optimization is the support for value filters described in the next section.

5.4.2 Value Filters

Value filters are dealt with much in the same way as equality predicates, with the exception that we alter
the right hand side of the predicate for each new value. To provide support for this scenario, we simply
repeat the procedure to find Blocks that satisfy a predicate for each new value contained in the value filter

ValueBlock stream.

42

5.4.3 Position Filters

Position filtering involves filtering a column for a set of positions. The set of positions desired is provided

by a PositionBlock stream. At a high level, the implementation of position filters is simple to describe:

1. foreach (positionBlock in positionBlockFilter)

(a) Find pages where the positions in positionBlock are coded.
(b) Find blocks which contain the positions in positionBlock.

(c) Remove positions from blocks that do not match positions in positionBlock.

2. Return these blocks.

Step 1.c may be a costly operation. In the case of delta coding schemes, removing a particular position
in a Block requires decompression of both the ValueBlocks, to know what positions are contained, and the
PositionBlockfilter. The properties of PositionBlocks may allow us for some optimizations. In particular,
if the PositionBlock stream is position sorted?, then we can avoid decompressing the PositionBlock as it
is just a range of positions. Additionally, if each PositionBlock is position sorted, and the coded column
is position sorted then we can perform the equivalent of a merge equijoin between the column and position

stream, where ValueBlock.Pair.position=positionStream.position.

A larger cost is involved in the case where the PositionBlocks we are using to filter are themselves not
position sorted and the column itself is not position contiguous. In this case, the Datasource is forced to
perform random I/O in order to transverse the column in the original sorted order, for each position in the
filter. If the column contains N pages, and there are k positions in the position filter, then in the worst case

we need to read O(N * k) pages.

Naturally, we want to move away from such situations. Under CStore, there are currently no schemes
where each ValueBlocks or PositionBlocks are not position sorted. Even in schemes whereby the physical
layout of disk is not position sorted, there are always subsets of the column that are position sorted ®. For
each position sorted subset, we can perform the optimizations described above.

In conclusion, position filtering is an equijoin on position, where the predicate is ValueBlock.Pair.position
= PositionBlock.position where the performance of this operation depends largely on the properties of

the column to be filtered, and the stream of positions.

4Therefore, each PositionBlock is both position sorted and position contiguous.
5As is the case for DeltaPos, where we have position indexes for each subset

43

5.5 Lower Layer Primitives

In the discussion above we have largely ignored how we write the compression specific data structures in-
troduced in Chapter 3. Each compression type has an Encoder and Decoder components that encode pages
from Blocks and that decode pages to Blocks respectively. These components in turn leverage some compo-
nents that provide the ability to read and write arbitrary number of bits from and to a buffer respectively.
Blocks and Datasources use these components extensively, therefore, the performance of the entire executor

can greatly depend on the performance of these components.

5.5.1 Encoding and Decoding

Encoders and Decoders provide the ability to translate Blocks to disk pages and vice versa. Encoders
may write a single Block (as is the case for delta coding based compression algorithms) or many Blocks
per page. Encoders also write per page header to indicate information necessary to decode, and encode any
sub-columns required in the compression algorithm. A PagePlacer component then takes the series of coded
pages and places them in BDB.

Decoders provide iterator access to Blocks contained on a page. Additionally, they provide methods
for quick access to find the starting and ending values and positions contained in the Blocks coded on that
page. These methods are used by Datasources to determine whether a certain value or position could be
contained on a page.

Encoders and decoders use a set of utility components to read and write an arbitrary number of bits to

an in memory buffer, described in the next section.

5.5.2 Reading and Writing Bits

Many of the compression schemes described in chapter 3 depend on the ability to read and write bit width
fields. This functionality is provided by the BitReader and BitWriter components. The BitWriter provides
the ability to write a value in a variable number of bits to a buffer. It moves sequentially down the buffer
eventually failing if it can no longer write a field of that size. Analogously, the BitReader class provides the
ability to read an arbitrary number of bits sequentially from a buffer.

These two components although not complex, are used by many of the light weight coding schemes and

have a significant impact on performance as can be noted in Chapter 6.

5.6 Final note on Software Architecture

In this section, we have discussed the design of most of the components in the executor. We began our

discussion with a look at the central Block interface used throughout the executor. Blocks provide the

44

ability to access compressed data efficiently, and through a set of properties provide operators a set of
guarantees on the structure of compressed data. Operators exploit this structure to increase performance.
Blocks are read from disk through Decoders by Datasources, who then pass them to operators in the query
plan. Datasources provide compression specific access methods with support for indexes and predicate push
down on all compression schemes, although the performance of these features depends greatly on the coding
scheme involved. In the next chapter, we present the results of the query executor and show the above

architecture to be viable.

45

46

Chapter 6

Results

In this section we analyze the performance of the CStore query executor. Our benchmarking system is a
3.0 Ghz Pentium IV, running RedHat Linux, with 2 GB of memory and 750 GB of disk. We begin our
analysis by first looking at the performance of our storage manager and light weight compression primitives.
Subsequently, we compare the CStore executor with current commercial systems and finally we look at how

compression is allowing using to improve the performance of queries.

6.1 Micro-Benchmarks: Developing a cost model for lower level

operations

In this section, we look at results of micro benchmarks designed to provide us with a basic cost model for
the CStore executor. We begin by measuring the performance of BDB indexes, followed by an analysis of

the cost of decompression for lightweight schemes.

6.1.1 Performance of Berkeley DB indexes

To execute a query we must first retrieve data from BerkeleyDB, our storage manager. Our performance is
dependent on how quickly we can perform sequential and index scans in BerkeleyDB. In the following micro
benchmark, we stored 15000 64Kb pages with both primary and secondary indexes. These indexes were then
accessed sequentially and randomly. A large file was copied between each experiment to ensure we have no
buffered data. Figure 6-1 presents the time per page achieved in each test.

From Figure 6-1, we see that looking up a page in a secondary index requires approximately twice the
time than lookups on the primary index. This fits with BDB’s design, as a lookup on a secondary index

returns a key for lookup in the primary index. Every lookup on a secondary index also requires a lookup

47

Access Pattern

Sequential Scan

Time Per Page
Lookup on Primary Index | Lookup on Secondary Index

Sequential

3.19ms

3.518ms 9.76ms

Random

N/A

12.38 ms 19.97ms

Figure 6-1: Time to Access Pages through BDB

on the primary index, thereby doubling the cost. Random I/O also costs on average 3 to 4 times more than

sequential 1/0.

6.1.2 Decompression costs

In the case of most light weight schemes, we rely on the ability to read an arbitrary number of bits from

a memory buffer. Within CStore there are two classes that provide the methods to read values from a

memory buffer: BitReader and ByteReader. As their names imply, BitReader provides the ability to read

an arbitrary number of bits whereas ByteReader provides the ability to read an arbitrary number of bytes.

In Figure 6-2, we measure the average CPU costs of reading fixed sized fields of various widths from memory.

Fep ndiimeg Bit oo Mamsiy

lidvidd & lipe poa Walies

Figure 6-2: CPU costs of reading values in memory

The dips in the graph at 8,16 and 32 bits because processors are optimized to read bytes, shorts(2 bytes),

and integers (4 bytes). We also note that the performance of BitReader deteriorates as the size of each value

increases. This is because BitReader reads a 32 bit buffer each time. If the particular value it is reading is

larger than the buffer, it reads the higher order bits from the current buffer and the lower order bits from

48

the next 32 bit buffer. As values increase in size, the probability that BitReader has to read two 32 bit
buffers increases and performance suffers.

In the context of CStore, to optimize performance we are interested in reducing the time required to
read each value. In Figure 6-3, we consider reading a million values from disk. There are two parameters
we alter. First we alter the way in which pages are read from disk. Are we reading the pages sequentially,
through a sequential scan of a column, or are we reading random pages by reading each page from a different
attribute. The random page I/O scenario is more likely under a column store system, as we have to read
many different attributes in parallel to answer a query. The second parameter altered is the size of the fields
on the page. The experiment runs by retrieving pages from disk and reading all the values on each page

until we have read a million values.

Total Cost per Value

Tione [uS)

0 2 4 6) 10 2 " 6 3 X 2 i 5 8

Number of Hirs per Value

w— 0% Sequenta ~50% Sequernadd 50% Randon 100% Rardom

Figure 6-3: Total Cost of Reading Column Values

In Figure 6-3, we note that the total time per value depends more on the type of disk access as the field
size increases. As the field size increases, we can place fewer values in a page and therefore are required to
read more pages to retrieve a million values.

Figure 6-3 also shows that for performance reasons, we should always pick 8, 16 or 32 bit fields for light

weight compression schemes. For example, in DeltaPos we maximize performance by having byte aligned

49

deltas. This is not an intuitive result, as we note that we can fit eight times more 1 bit values than 8 bit
values, but reading a bit is not eight times more expensive than reading a byte.

To clarify the reason for this difference, let us consider the total cost of reading 64K single bit values
against reading 64K bytes. To read 64K one bit values we need to read a single page from disk, and from
Figure 6-2 we see that reading bit sized fields requires twice the CPU time than reading byte sized values.
Let us denote the time to load a page from disk as D, and the time to read a single byte from memory as
C. For single bit values the time is equivalent to that of reading a page and reading in 64K single bit values
(where each value read requires 2*C time). Therefore, we have:

TotalTime = D + 2 x 65536 % C

To read 64K byte sized values we need to read 8 pages, however the time to read each value is just C.
Therefore the total time to read 64K byte-sized values is is:

TotalTime = 8 x D + 65536 * C

For reading one bit values to be faster than byte sized values, we require that

D +2%65536+«C < 8% D+ 2x%65536+ C

65536« C' < 7% D

Now, C is around 14uS, so for reading bit values be faster than byte sized values then reading a page

from disk would have to take:
65536+14uS
D > fu

D > 131072usS
D > 131 ms

The conclusion is that disks are not slow enough to compensate non byte aligned data access.

6.2 CStore Performance compared with Commercial DBMSs

In data warehousing, the industry benchmark for performance is known as TPC-H. We use a simplified
version of the TPC-H queries to compare our performance against two commercial systems, one row based

and a second column based product. We implement the following tables:

lineitem < orderID[int],partkey[int], suppkey[int], linenumber[int], quantity[int], extendedpricel[int],

returnflag[byte], shipdate[int] >
orders < orderID[int], orderDate[int]>

customer < custID[int], nationID[int]>

The TPC-H data generator, operated on scale 10, generates 1.8 GBs of data. Of the three tables, the

lineitem table is the largest with 60 million rows. In our experiments, CStore operated on the following

50

schema:

Di1:
D2:
D3:
D4:
D5:

<lineitem> sorted by shipdate, suppkey.

<orders.orderdate, lineitem.shipdate, lineitem.suppkey> sorted by orderdate, suppkey.
<order.orderdate, order.custID, order.orderID> sorted by orderdate.
<lineitem.returnflag, lineitem.extprice, customer.nationID> sorted by returnflag.

<customer.custID, customer.nationID> sorted by custID.

D2 and D4 are materialized join views. A materialized join is created by storing the result of a join between

two tables. D2 is created by joining the 1ineitem and order tables with the predicate 1ineitem.orderkey =

orders.orderkey. D4 is created by joining D2 and the customers table with the predicate customer.custID

= customers.custID. We ran the following queries over this schema:

Query 1

Query 2

Query 3

Query 4

Query 5

Determine the total number of items shipped for each day after day D.

SELECT shipdate, COUNT (x)
FROM lineitem

WHERE shipdate > D

GROUP BY shipdate

Determine the total number of items shipped for each supplier on day D.

SELECT suppkey, COUNT ()
FROM lineitem

WHERE shipdate = D

GROUP BY suppkey

Determine the total number of lineitems shipped for each supplier after day D.

SELECT suppkey, COUNT ()
FROM lineitem

WHERE shipdate > D

GROUP BY suppkey

For every day after D, determine the latest shipdate of all items ordered on that day.

SELECT orderdate, MAX (shipdate)

FROM lineitem, orders

WHERE lineitem.orderkey = orders.orderkey AND
orderdate > D

GROUP BY orderdate

For each supplier, determine the latest shipdate of an item from an order that was made on some date,

D.

SELECT suppkey, MAX (shipdate)

FROM lineitem, orders

WHERE lineitem.orderID = orders.orderID AND
orderdate = D

GROUP BY suppkey

51

Query 6 For each supplier, determine the latest shipdate of an item from an order made after some date, D.

SELECT suppkey, MAX (shipdate)
FROM lineitem, orders
WHERE lineitem.orderID = orders.orderID AND
orderdate > D
GROUP BY suppkey
Query 7 Return a list of identifiers for all nations represented by customers along with their total lost revenue

for the parts they have returned. This is a simplified version of query 10 (Q10) of TPC-H.
SELECT nationID, sum(extendedprice)

FROM lineitem, orders, customer

WHERE lineitem.orderID=orders.orderID AND

customers.custID=customer.custID AND

returnflag="R’

GROUP BY nationID

The query plans for these seven queries are shown in Figure 6-4. We ran the same queries on two
commercial databases, a row store and a column store. We ran the commercials systems on the same
platform and disable locking and logging. In addition, we tuned any system specific parameters to what we
believe to be optimal value for these queries. We presented the two commercial system in two scenarios. In
the first scenario, these systems are space constrained and are to operate with a budget of 2.7GB. The row
store was unable to operate in this scenario, so we expanded its budget to 4.5GB which was the minimum
amount it required to store the tables and their indexes. In the second scenario, we removed the space
constraint and gave both systems the CStore schema. The space usage by both systems is shown in Figure
6-5.

From Figure 6-5, we see that CStore space usage is remarkably smaller than either of the commercial
systems. With the same schema, CStore uses 83% less disk space than the row store and 52% less than the
column store.

CStore also excelled in performance. It outperformed both commercial systems under both scenarios.
Figure 6-6 shows the performance of all systems, and in addition the performance of the CStore executor
using only decompressed data.

In subsequent sections, we provide more detailed analysis of the costs of these queries within CStore,

beginning with a low level analysis of the disk access and decompression costs.

6.2.1 Analysis of Costs

In this section we analyze the particular costs involved in each query. We measured disk cost by recording
the user time, system time and real time before and after any calls to retrieve a page from disk. Additionally,
to measure the relative costs of operations within the queries, we profiled each query using callgrind[1] a tool
that uses the valgrind[18] framework estimate the number of cycles spent in each line of code. We present

this analysis the next subsections.

52

PostionBlocks

Count
shipdate, Group By shipdate

RLEDatasource RLEDatasource
Predicate: >D Predicate: = D
D1.shipdate D1.shipdate

(a) Query 1 Plan

IntDatasource
Position Filtered

D2.shipdate

suppkey, Group By: suppkey suppkey, Group By: suppkey

Datasource PostionBlocks —— Datasource
Position Filtered ostionBlocks Position Filtered

RLEDatasource
Predicate: > D

D1.suppkey D1.shipdate D1.suppkey

(b) Query 2 Plan

Max
shipdate, Group By: orderdate

PostionBlocks —— Datasource
Position Filtered

RLEDatasource
Predicate: > D

D2.orderdate D2.shipdate

(d) Query 4 Plan

Max
shipdate, Group By: suppkey

—— PosBlock Copy

PostionBlocks

RLEDatasource
Predicate: >D

D2.orderdate

(f) Query 6 Plan

IntDatasource
Position Filtered

D2.suppkey

IntDatasource

Position Filtered

D2.shipdate

(¢) Query 3 Plan

Max
shipdate, Group By: suppkey

IntDatasource
Position Filtered

—— PosBlock Copy

PostionBlocks

RLEDatasource
Predicate: =D
D2.orderdate D2.suppkey
(e) Query 5 Plan
Sum
extendedprice, Group By: nationID
IntDatasource - IntDatasource
Position Filtered PosBlock Copy Position Filtered

PostionBlocks

RLEDatasource
Predicate: ='R’

D4.nationkey DA4.returnflag D4.extendedprice

(g) Query 7 Plan

Figure 6-4: Query Plans

53

Time [s] (Log Scale)

1000

100

10

0.1 4

0.01

{

Database Constrained | Unconstrained
System Space Usage Space Usage
CStore 1.980GB 1.98GB

Row Store 4.48GB 11.90GB

Column Store 2.65GB 4.09GB

Figure 6-5: Disk Space Usage

Query Performance

Query 1 Query 2

ol

Query 3 Query 4

Query 5 Query 6 Query 7

o Cstore

0 Coburmn Store Space Limded

aRow Stare Space Limted

& Column Stome Space Undmeed B Cstore Uncompressed

ORow Store Space Undmited

Figure 6-6: Query Results

54

Queries 1, 2

Queries 1 and 2 are both short running queries. In these queries, disk I/O and query plan instantiation
dominate the total query costs. Figure 6-7 shows the CPU and disk costs in each of these three queries,

while Figure 6-8 shows the break down of CPU costs between various components of the code for Query?2.

| Query Number || CPU Time | Disk Time ||

1 50% 50%!
2 70% 30%

Figure 6-7: Results for Queries 1 and 2

We see from Figure 6-7 disk costs around 40% of the query time. From 6-8, we observe that main processor
costs are in the final decompression to write the results to disk, with a total cost of 74.34%-35.69%=38.65%.
Data computation requires 35.69% of the CPU time. The overhead for the instatiation of the IntDataSource,
RLEDataSource and BDB access methods (AM) are the largest remaining costs accounting for around 20% of

the processor time.

o~ nn\ i‘l COTE ‘l mu\

oRus Counwrs ;__.xu ~

am s s

Figure 6-8: CPU Profiling for Query 2

95

| Query Number || CPU Time | Disk Time || |

3 73% 27%
5 64% 46%
6 76% 24%
7 57% 43%

Figure 6-9: Results for Queries 3,5,6 and 7

Query 3,5,6 and 7

Of this group of queries, Queries 3 and 6 are the most similar. Both queries are CPU limited. As shown in
Figure 6-9 CPU time accounts for a three quarters of query time, with the remaining quarter of time used
for disk I/0.

Both queries 3 and 6 have a predicate on an RLE encoded column. Query 3 position filters an uncompressed
Datasource, while Query 6 filters two uncompressed Datasources. Subsequently, they both aggregate, with
a self aggregation in Query 3 and Query 6 aggregating on orders.shipdate. In both cases, the group by
column is suppkey, which is an uncompressed and unsorted column.

As the suppkey column is unsorted, we perform hash based aggregation. The cost in both these queries
is dominated by the aggregation operation and the HashMap data structure, as can be seen for Query 3
in Figure 6-10. In Query 3, the aggregation operator consumes a total of 98.6%-35.59%=63.01 % of CPU
time. We also note that the performance of the query is dominated by operations on the uncompressed data.
Filtering operations are fast as filtering PositionBlocks are compressed. Retrieving individual values from
a memory buffer and placing them in BasicBlocks takes up a total of 32% of the CPU time. Optimizing
this cost is an area of future work.

Query 5 is similar to Query 6, except that the equality predicate is far more selective. For this reason, it
deals with less data and is a short running query. 50% of the costs are still involved in performing aggregation,
with 30% involved in retrieving data and the remaining costs involved in instatiation and writing the results.

The query plan for Query 7 is identical to Query 5 except on different data. The equality predicate
applied on the RLEDataSource is less selective than in Query 5, as the returnflag has fewer values than
orderdate. For this reason, Query 7 requires more time, however, the relative costs of each operation in the

query plan remain largely unaltered.

6.3 Operating Directly on Compressed Data

Of the 7 queries executed, only queries 1 and 4 operate directly on compressed data. All other queries
filter a compressed column and subsequently use the results of that query to filter other columns. How-

ever, the executor is designed to generate compressed position vectors, therefore, a predicate applied on

56

21093 %

Figure 6-10: CPU Profiling for Query 3

o7

an IntDataSource on sorted data will produce a PosRLEBlock to represent the positions that match the
predicate. For this reason, we see in Figure 6-6 the performance of the CStore executor on compressed or
uncompressed data differs little for Queries 2,3,5,6 and 7.

Queries 1 and 4 do show great improvements when run on compressed versus on compressed data. In both
these queries, we perform an aggregation grouped by an RLE encoded column. Query 1 shows a two orders
of magnitude improvement in performance when operating on compressed data, while Query 4 shows only a
factor of 2 improvement in performance. Query 4’s benefit is more modest, as performance is dominated by

the computation of the aggregation function on the uncompressed column.

6.4 Result Summary

To summarize we believe the following factors allowed us to achieve better performance:
e Column Architecture: we avoid reading unnecessary attributes
e Operation on Compressed Data: we avoid decompression costs and can perform operations faster.
e Better Compression Schemes: allow us to lower our disk space requirements.

e Compressed Intermediate Results: allow us the number of iterator calls and allow for further optimiza-

tions.

o8

Chapter 7

Related Work

There is a long history of research into the use of compression in databases[9, 16, 3]. However, it was not until
the 1990s that research first concentrated on how compression affects database performance[4, 7, 14, 5, 8].
Most work concluded that there were a limited number of compression algorithms that could be used as the
CPU cost of decompression outweighs the I/O savings. Therefore, most systems concentrated on the use of
light-weight compression techniques. Light-weight schemes sacrifice compression ratio in order to ensure low
compression and decompression CPU requirements.

Following the initial studies, research turned to reducing the cost of decompression. In early systems,
data was decompressed immediately after it was read from disk. Graefe and Shapiro [4] suggested that it
was not always necessary to decompress data. In particular, it was possible to lazily decompress the data,
if and when that data was used by the executor. In such systems, data is compressed on the attribute level
and held compressed in memory. Data would only be decompressed when an operator were to access the
data.

Others proposed hybrid schemes with transient decompression. Chen et. al. [2] note that some operators
can decompress transiently, decompressing to perform operations such as applying a predicate, but keeping
a copy of the compressed data and returning the compressed data if the predicate succeeds.

In this thesis, we have described the development of a query executor that operates directly on compressed
data. The idea of working on compressed data is not new. Graefe et al. [4] pointed that exact match
comparisons and natural joins can be performed directly on compressed data. Additionally, they point out
that projection and duplicate elimination can be performed on compressed data, as well as exact-match
index lookups if an order-preserving (consistent) compression scheme is used.

Under CStore, we look at compression algorithms to provide us additional structure over the data. We
introduce a novel architecture to pass compressed data between operators that minimizes operator code

complexity while maximizing opportunities for direct operation on compressed data. [5, 19, 2] stress the

99

importance of abstracting the executor from the details of a compression technique. They achieve this by
decompressing the data before it is exposed to operators. Instead, we provide operators with a common
interface to decompress data, to provide this abstraction. However, by exposing sufficient information about
the compressed values, operators are able to operate directly on compressed data. Our executor’s high

performance is a direct consequence of operator’s ability to do this.

60

Chapter 8

Future Work

There are many projects on going within CStore to make it a complete DBMS. Our work, in this thesis,
has assumed many correct decisions will be made by the optimizer, so it is worthwhile discussing some of
the challenges that will be faced in designing a query optimizer. In addition, in our implementation of the
CStore executor we have identified several areas for future research. In the next two section, we outline some

of our ideas for the future work in the optimizer and the executor.

8.1 Optimizer

Currently missing in our work is an analysis of how the CStore query optimizer will pick good query plans.
The CStore executor introduces many new complexities to the optimizer. Storing columns redundantly under
different schemes forces the optimizer to decide which columns to use for a particular query. To accomplish
this, the optimizer is required to have a cost model for operations over different types of compressed, along
with the traditional cost models for deciding which physical operators to use. The optimizer will also
have to decide whether or not to filter Datasources or perform sequential scans, depending on its estimate
of the cardinality of the PositionBlock stream and the cost to apply this position filter to each specific

Datasource. The metrics required by the optimizer and its structure are at this point undefined.

8.2 Executor

Within the executor, we believe there are two major areas of future work: one in the short term and a second
in the long term. The first is a exhaustive performance study of the current architecture with the goal of
minimizing the number of cache misses and improving performance. We estimate that a total of 18 to 23%

of CPU time is due to cache misses. The second area is to relax the requirement on aggregation operators

61

that their two input’s positions be lined up.

From profiling the performance of the current system, we found that the performance of reading uncom-
pressed data dominates our system. In our current design, we read a single value from the page and pass
the value between all operators before reading the next value from the page. When we go to retrieve the
next value, we find that the page itself (or whatever part of the page we reading at) has been evicted from
the cache. This means to read each value we are required to read from main memory. The alternative is for
BasicBlocks to contain more than one value. The optimal number of values contained by Block needs to
be experimentally determined and is likely to be platform dependent.

In the long term, it would be interesting to relax the requirement that the two input streams to operators
like the aggregation operators, BAND, BOr have to be position aligned. We currently require, in all of these
operators, that the i*" position in the both the input streams is the same for all i. Relaxing this requirement
means that these operators must keep some state, as operators must remember the positions (and in the case
of aggregation, the value at that position) that they have not yet seen in the other input stream. Depending
on the ordering of positions, the number of positions stored is O(n) where n is the largest input column.
This seems unreasonable, as operators are forced to spill data to disk in order to hold so much state.

One option is to give some guarantees to operators as to how out of order columns are. Suppose that
we have an unsorted column, and we decide to sort every 100 values while keeping track of each values
original position. This is equivalent to sorting 100 adjacent Pairs on value. We can place these Pairs in
a Block, where the successive values in the Pairs can be delta-encoded and positions in the Pairs can be
offset-encoded!. We now have value-sorted blocks, allowing for greater performance in aggregation operators
such as min and max and operators with predicates such as selects and joins. However, we have increased the
cost and complexity of position operations, such as the group by operation in aggregation. The advantage is
that we know that given 100 values we will have seen the the corresponding 100 adjacent positions, therefore,

the amount of state that must be held is bounded.

1n offset encoding we take the median of the positions and encode each position as the difference from this median. This
would require log2(50) bits plus one bit to encode the sign

62

Chapter 9

Conclusion

In this thesis, we showed how operating directly on compressed data can improve query performance. We
saw a performance advantage of up to two orders of magnitude when we switched from uncompressed to
compressed data. The key to performance is not only the reduction in disk I/O, but the executor’s ability
to operate directly on compressed data. Operating on compressed data not only eliminates the cost of
decompression, but also increases operator performance as operators can take advantage of the structure of
compressed data. In addition, the use of compressed intermediary results, such as PositionBlocks used for
filtering, combined with column-oriented design allowed us to, on average, outperform commercial systems
by an order of magnitude.

The CStore query executor provides a common interface to operate on compressed data, giving operators
the ability to optimize based on a set of general properties. Introduction of new compression schemes requires
no changes to operator code, as compression specific details are hidden from operators by compression specific
code in Blocks and Datasources.

The encouraging performance numbers of our initial CStore implementation suggest the novel architecture
proposed in this thesis has the potential to alter the way real data warehouse systems are built. The
combination of compression and a column-oriented data model allow us to perform well and still have low

disk storage costs.

63

64

Bibliography

[1]
2]

[10]

Callgrind. Callgrind. http://kcachegrind.sourceforge.net/cgi-bin/show.cgi.

Zhiyuan Chen, Johannes Gehrke, and Flip Korn. Query optimization in compressed database systems.
In SIGMOD °01: Proceedings of the 2001 ACM SIGMOD international conference on Management of
data, pages 271-282. ACM Press, 2001.

Gordon V. Cormack. Data compression on a database system. Commun. ACM, 28(12):1336-1342, 1985.

G.Graefe and L.Shapiro. Data compression and database performance. In ACM/TEEE-CS Symp. On
Applied Computing pages 22 -27, April 1991.

Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. Compressing relations and indexes. In ICDE
’98: Proceedings of the Fourteenth International Conference on Data Engineering, pages 370-379. IEEE
Computer Society, 1998.

http://www.sybase.com/products/databaseservers/sybaseiq.

Balakrishna R. Iyer and David Wilhite. Data compression support in databases. In VLDB ’94: Proceed-
ings of the 20th International Conference on Very Large Data Bases, pages 695—704. Morgan Kaufmann
Publishers Inc., 1994.

Theodore Johnson. Performance measurements of compressed bitmap indices. In VLDB ’99: Proceedings
of the 25th International Conference on Very Large Data Bases, pages 278-289. Morgan Kaufmann
Publishers Inc., 1999.

Clifford A. Lynch and E. B. Brownrigg. Application of data compression to a large bibliographic data
base. In Very Large Data Bases, 7th International Conference, September 9-11, 1981, Cannes, France,
Proceedings, pages 435-447. IEEE Computer Society, 1981.

M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Raisin, N. Tran and S. Zdonik. C-store: A column-oriented dbms. In VLDB,
2005.

65

[11]

[12]

[13]

[14]

[17]
18]

[19]

Markus F. X. J. Oberhummer. LZO: A real-time data compression library, 2002.

http://www.oberhumer.com/opensource/l1zo/1zodoc.php.

P. O’Neil and D. Quass. A universal algorithm for sequential data compression. In IEEE Transactions

on Information Theory, vol. 23, no. 3, pages 337-343, 1977.
P. O’'Neil and D. Quass. Improved query performance with variant indexes. In SIGMOD, 1997.

Gautam Ray, Jayant R. Haritsa, and S. Seshadri. Database compression: A performance enhancement

tool. In COMAD, pages 0—, 1995.
Mark A. Roth and Scott J. Van Horn. Database compression. SIGMOD Rec., 22(3):31-39, 1993.

Dennis G. Severance. A practitioner’s guide to data base compression - tutorial. Inf. Syst., 8(1):51-62,

1983.
Sleepycat. Berkeleydb. http://www.sleepycat.com/products/db.shtml.
Valgrind. Valgrind. http://kcachegrind.sourceforge.net/cgi-bin/show.cgi.

Till Westmann, Donald Kossmann, Sven Helmer, and Guido Moerkotte. The implementation and

performance of compressed databases. SIGMOD Rec., 29(3):55-67, 2000.

66

